|
import collections.abc |
|
import math |
|
from collections import OrderedDict |
|
from itertools import repeat |
|
from typing import Callable, Optional, Sequence, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from transformers import AutoModel, PreTrainedModel |
|
|
|
from .configuration_japanese_clip import JapaneseCLIPConfig |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm (with cast back to input dtype).""" |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
orig_dtype = x.dtype |
|
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
return x.to(dtype=orig_dtype) |
|
|
|
|
|
class LayerScale(nn.Module): |
|
def __init__(self, dim, init_values=1e-5, inplace=False): |
|
super().__init__() |
|
self.inplace = inplace |
|
self.gamma = nn.Parameter(torch.ones(dim) * init_values) |
|
|
|
def forward(self, x): |
|
return x.mul_(self.gamma) if self.inplace else x * self.gamma |
|
|
|
|
|
class PatchDropout(nn.Module): |
|
""" |
|
https://arxiv.org/abs/2212.00794 |
|
""" |
|
|
|
def __init__(self, prob, exclude_first_token=True): |
|
super().__init__() |
|
assert 0 <= prob < 1.0 |
|
self.prob = prob |
|
self.exclude_first_token = exclude_first_token |
|
|
|
def forward(self, x): |
|
if not self.training or self.prob == 0.: |
|
return x |
|
|
|
if self.exclude_first_token: |
|
cls_tokens, x = x[:, :1], x[:, 1:] |
|
else: |
|
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) |
|
|
|
batch = x.size()[0] |
|
num_tokens = x.size()[1] |
|
|
|
batch_indices = torch.arange(batch) |
|
batch_indices = batch_indices[..., None] |
|
|
|
keep_prob = 1 - self.prob |
|
num_patches_keep = max(1, int(num_tokens * keep_prob)) |
|
|
|
rand = torch.randn(batch, num_tokens) |
|
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices |
|
|
|
x = x[batch_indices, patch_indices_keep] |
|
|
|
if self.exclude_first_token: |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
return x |
|
|
|
|
|
class AttentionalPooler(nn.Module): |
|
def __init__( |
|
self, |
|
d_model: int, |
|
context_dim: int, |
|
n_head: int = 8, |
|
n_queries: int = 256, |
|
norm_layer: Callable = LayerNorm |
|
): |
|
super().__init__() |
|
self.query = nn.Parameter(torch.randn(n_queries, d_model)) |
|
self.attn = nn.MultiheadAttention(d_model, n_head, kdim=context_dim, vdim=context_dim) |
|
self.ln_q = norm_layer(d_model) |
|
self.ln_k = norm_layer(context_dim) |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = self.ln_k(x).permute(1, 0, 2) |
|
N = x.shape[1] |
|
q = self.ln_q(self.query) |
|
out = self.attn(q.unsqueeze(1).expand(-1, N, -1), x, x, need_weights=False)[0] |
|
return out.permute(1, 0, 2) |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
d_model: int, |
|
n_head: int, |
|
mlp_ratio: float = 4.0, |
|
ls_init_value: Optional[float] = None, |
|
act_layer: Callable = nn.GELU, |
|
norm_layer: Callable = LayerNorm, |
|
is_cross_attention: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.ln_1 = norm_layer(d_model) |
|
self.attn = nn.MultiheadAttention(d_model, n_head) |
|
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() |
|
if is_cross_attention: |
|
self.ln_1_kv = norm_layer(d_model) |
|
|
|
self.ln_2 = norm_layer(d_model) |
|
mlp_width = int(d_model * mlp_ratio) |
|
self.mlp = nn.Sequential(OrderedDict([ |
|
("c_fc", nn.Linear(d_model, mlp_width)), |
|
("gelu", act_layer()), |
|
("c_proj", nn.Linear(mlp_width, d_model)) |
|
])) |
|
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() |
|
|
|
def attention( |
|
self, |
|
q_x: torch.Tensor, |
|
k_x: Optional[torch.Tensor] = None, |
|
v_x: Optional[torch.Tensor] = None, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
): |
|
k_x = k_x if k_x is not None else q_x |
|
v_x = v_x if v_x is not None else q_x |
|
|
|
attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None |
|
return self.attn( |
|
q_x, k_x, v_x, need_weights=False, attn_mask=attn_mask |
|
)[0] |
|
|
|
def forward( |
|
self, |
|
q_x: torch.Tensor, |
|
k_x: Optional[torch.Tensor] = None, |
|
v_x: Optional[torch.Tensor] = None, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
): |
|
k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None |
|
v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None |
|
|
|
x = q_x + self.ls_1(self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask)) |
|
x = x + self.ls_2(self.mlp(self.ln_2(x))) |
|
return x |
|
|
|
|
|
|
|
def _ntuple(n): |
|
def parse(x): |
|
if isinstance(x, collections.abc.Iterable): |
|
return x |
|
return tuple(repeat(x, n)) |
|
return parse |
|
|
|
to_2tuple = _ntuple(2) |
|
|
|
|
|
def _expand_token(token, batch_size: int): |
|
return token.view(1, 1, -1).expand(batch_size, -1, -1) |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__( |
|
self, |
|
width: int, |
|
layers: int, |
|
heads: int, |
|
mlp_ratio: float = 4.0, |
|
ls_init_value: float = None, |
|
act_layer: Callable = nn.GELU, |
|
norm_layer: Callable = LayerNorm, |
|
): |
|
super().__init__() |
|
self.width = width |
|
self.layers = layers |
|
self.grad_checkpointing = False |
|
|
|
self.resblocks = nn.ModuleList([ |
|
ResidualAttentionBlock( |
|
width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer) |
|
for _ in range(layers) |
|
]) |
|
|
|
def get_cast_dtype(self) -> torch.dtype: |
|
if hasattr(self.resblocks[0].mlp.c_fc, 'int8_original_dtype'): |
|
return self.resblocks[0].mlp.c_fc.int8_original_dtype |
|
return self.resblocks[0].mlp.c_fc.weight.dtype |
|
|
|
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): |
|
for r in self.resblocks: |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
|
|
x = checkpoint(r, x, None, None, attn_mask) |
|
else: |
|
x = r(x, attn_mask=attn_mask) |
|
return x |
|
|
|
|
|
class JapaneseCLIPVisionTransformer(PreTrainedModel): |
|
output_tokens: torch.jit.Final[bool] |
|
|
|
def __init__( |
|
self, |
|
image_size: int, |
|
patch_size: int, |
|
width: int, |
|
layers: int, |
|
heads: int, |
|
mlp_ratio: float, |
|
ls_init_value: float = None, |
|
attentional_pool: bool = False, |
|
attn_pooler_queries: int = 256, |
|
attn_pooler_heads: int = 8, |
|
output_dim: int = 512, |
|
patch_dropout: float = 0., |
|
no_ln_pre: bool = False, |
|
pool_type: str = 'tok', |
|
final_ln_after_pool: bool = False, |
|
act_layer: Callable = nn.GELU, |
|
norm_layer: Callable = LayerNorm, |
|
output_tokens: bool = False, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
assert pool_type in ('tok', 'avg', 'none') |
|
self.output_tokens = output_tokens |
|
image_height, image_width = self.image_size = to_2tuple(image_size) |
|
patch_height, patch_width = self.patch_size = to_2tuple(patch_size) |
|
self.grid_size = (image_height // patch_height, image_width // patch_width) |
|
self.final_ln_after_pool = final_ln_after_pool |
|
self.output_dim = output_dim |
|
|
|
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) |
|
|
|
|
|
scale = width ** -0.5 |
|
self.class_embedding = nn.Parameter(scale * torch.randn(width)) |
|
self.positional_embedding = nn.Parameter( |
|
scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width)) |
|
|
|
|
|
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() |
|
|
|
self.ln_pre = nn.Identity() if no_ln_pre else norm_layer(width) |
|
self.transformer = Transformer( |
|
width, |
|
layers, |
|
heads, |
|
mlp_ratio, |
|
ls_init_value=ls_init_value, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
) |
|
|
|
if attentional_pool: |
|
if isinstance(attentional_pool, str): |
|
self.attn_pool_type = attentional_pool |
|
self.pool_type = 'none' |
|
if attentional_pool in ('parallel', 'cascade'): |
|
self.attn_pool = AttentionalPooler( |
|
output_dim, |
|
width, |
|
n_head=attn_pooler_heads, |
|
n_queries=attn_pooler_queries, |
|
) |
|
self.attn_pool_contrastive = AttentionalPooler( |
|
output_dim, |
|
width, |
|
n_head=attn_pooler_heads, |
|
n_queries=1, |
|
) |
|
else: |
|
assert False |
|
else: |
|
self.attn_pool_type = '' |
|
self.pool_type = pool_type |
|
self.attn_pool = AttentionalPooler( |
|
output_dim, |
|
width, |
|
n_head=attn_pooler_heads, |
|
n_queries=attn_pooler_queries, |
|
) |
|
self.attn_pool_contrastive = None |
|
pool_dim = output_dim |
|
else: |
|
self.attn_pool = None |
|
pool_dim = width |
|
self.pool_type = pool_type |
|
|
|
self.ln_post = norm_layer(pool_dim) |
|
self.proj = nn.Parameter(scale * torch.randn(pool_dim, output_dim)) |
|
|
|
self.init_parameters() |
|
|
|
def lock(self, unlocked_groups=0, freeze_bn_stats=False): |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
if unlocked_groups != 0: |
|
groups = [ |
|
[ |
|
self.conv1, |
|
self.class_embedding, |
|
self.positional_embedding, |
|
self.ln_pre, |
|
], |
|
*self.transformer.resblocks[:-1], |
|
[ |
|
self.transformer.resblocks[-1], |
|
self.ln_post, |
|
], |
|
self.proj, |
|
] |
|
|
|
def _unlock(x): |
|
if isinstance(x, Sequence): |
|
for g in x: |
|
_unlock(g) |
|
else: |
|
if isinstance(x, torch.nn.Parameter): |
|
x.requires_grad = True |
|
else: |
|
for p in x.parameters(): |
|
p.requires_grad = True |
|
|
|
_unlock(groups[-unlocked_groups:]) |
|
|
|
def init_parameters(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pass |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.transformer.grad_checkpointing = enable |
|
|
|
def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
if self.pool_type == 'avg': |
|
pooled, tokens = x[:, 1:].mean(dim=1), x[:, 1:] |
|
elif self.pool_type == 'tok': |
|
pooled, tokens = x[:, 0], x[:, 1:] |
|
else: |
|
pooled = tokens = x |
|
|
|
return pooled, tokens |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = self.conv1(x) |
|
x = x.reshape(x.shape[0], x.shape[1], -1) |
|
x = x.permute(0, 2, 1) |
|
|
|
|
|
x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1) |
|
|
|
x = x + self.positional_embedding.to(x.dtype) |
|
|
|
x = self.patch_dropout(x) |
|
x = self.ln_pre(x) |
|
|
|
x = x.permute(1, 0, 2) |
|
x = self.transformer(x) |
|
x = x.permute(1, 0, 2) |
|
|
|
if self.attn_pool is not None: |
|
if self.attn_pool_contrastive is not None: |
|
|
|
x = self.ln_post(x) |
|
tokens = self.attn_pool(x) |
|
if self.attn_pool_type == 'parallel': |
|
pooled = self.attn_pool_contrastive(x) |
|
else: |
|
assert self.attn_pool_type == 'cascade' |
|
pooled = self.attn_pool_contrastive(tokens) |
|
else: |
|
|
|
x = self.attn_pool(x) |
|
x = self.ln_post(x) |
|
pooled, tokens = self._global_pool(x) |
|
elif self.final_ln_after_pool: |
|
pooled, tokens = self._global_pool(x) |
|
pooled = self.ln_post(pooled) |
|
else: |
|
x = self.ln_post(x) |
|
pooled, tokens = self._global_pool(x) |
|
|
|
if self.proj is not None: |
|
pooled = pooled @ self.proj |
|
|
|
if self.output_tokens: |
|
return pooled, tokens |
|
|
|
return pooled |
|
|
|
|
|
class JapaneseCLIPModel(PreTrainedModel): |
|
config_class = JapaneseCLIPConfig |
|
|
|
def __init__(self, config: JapaneseCLIPConfig): |
|
super().__init__(config) |
|
text_config = config.text_config |
|
vision_config = config.vision_config |
|
|
|
self.image_encoder = JapaneseCLIPVisionTransformer( |
|
**vision_config.to_dict() |
|
) |
|
self.text_encoder = AutoModel.from_config(text_config, add_pooling_layer=False) |
|
hidden_size = text_config.hidden_size |
|
self.projection_dim = self.image_encoder.output_dim |
|
self.text_projection = nn.Linear(hidden_size, self.projection_dim, bias=False) |
|
self.logit_scale = nn.Parameter(torch.ones([]) * math.log(1 / 0.07)) |
|
self.max_length = config.max_length |
|
self.position_ids = list(range(0, self.max_length)) |
|
|
|
def _create_position_id_tensor(self, batch_size: int) -> torch.LongTensor: |
|
|
|
|
|
return torch.LongTensor([self.position_ids for _ in range(batch_size)]) |
|
|
|
def get_image_features(self, pixel_values: torch.FloatTensor) -> torch.FloatTensor: |
|
return self.image_encoder(pixel_values) |
|
|
|
def get_text_features( |
|
self, input_ids: torch.Tensor, position_ids: torch.Tensor = None |
|
) -> torch.FloatTensor: |
|
if position_ids is None: |
|
position_ids = self._create_position_id_tensor(input_ids.size(0)).to( |
|
input_ids.device |
|
) |
|
last_hidden_state = self.text_encoder( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
output_hidden_states=True, |
|
return_dict=True, |
|
).hidden_states[ |
|
-1 |
|
] |
|
pooled_output = last_hidden_state[:, 0, :] |
|
return self.text_projection(pooled_output) |
|
|
|
def forward( |
|
self, |
|
pixel_values: torch.FloatTensor, |
|
input_ids: torch.Tensor, |
|
position_ids: torch.Tensor = None, |
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: |
|
""" |
|
DDPを使うときはこのメソッドを経由しなければならない |
|
他のメソッドで得られた勾配はGPU間で同期されない |
|
""" |
|
image_features = self.get_image_features(pixel_values) |
|
text_features = self.get_text_features(input_ids, position_ids) |
|
return image_features, text_features, self.logit_scale |