File size: 17,577 Bytes
ac9a398 391228d ac9a398 391228d ac9a398 391228d ac9a398 1e586a4 ac9a398 e7036b0 ac9a398 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
import collections.abc
import math
from collections import OrderedDict
from itertools import repeat
from typing import Callable, Optional, Sequence, Tuple
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.checkpoint import checkpoint
from transformers import AutoModel, PreTrainedModel
from .configuration_japanese_clip import JapaneseCLIPConfig
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
def forward(self, x: torch.Tensor) -> torch.Tensor:
orig_dtype = x.dtype
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
return x.to(dtype=orig_dtype)
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(torch.ones(dim) * init_values)
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma
class PatchDropout(nn.Module):
"""
https://arxiv.org/abs/2212.00794
"""
def __init__(self, prob, exclude_first_token=True):
super().__init__()
assert 0 <= prob < 1.0
self.prob = prob
self.exclude_first_token = exclude_first_token # exclude CLS token
def forward(self, x):
if not self.training or self.prob == 0.:
return x
if self.exclude_first_token:
cls_tokens, x = x[:, :1], x[:, 1:]
else:
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
batch = x.size()[0]
num_tokens = x.size()[1]
batch_indices = torch.arange(batch)
batch_indices = batch_indices[..., None]
keep_prob = 1 - self.prob
num_patches_keep = max(1, int(num_tokens * keep_prob))
rand = torch.randn(batch, num_tokens)
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
x = x[batch_indices, patch_indices_keep]
if self.exclude_first_token:
x = torch.cat((cls_tokens, x), dim=1)
return x
class AttentionalPooler(nn.Module):
def __init__(
self,
d_model: int,
context_dim: int,
n_head: int = 8,
n_queries: int = 256,
norm_layer: Callable = LayerNorm
):
super().__init__()
self.query = nn.Parameter(torch.randn(n_queries, d_model))
self.attn = nn.MultiheadAttention(
d_model, n_head, kdim=context_dim, vdim=context_dim
)
self.ln_q = norm_layer(d_model)
self.ln_k = norm_layer(context_dim)
def forward(self, x: torch.Tensor):
x = self.ln_k(x).permute(1, 0, 2) # NLD -> LND
N = x.shape[1]
q = self.ln_q(self.query)
out = self.attn(
q.unsqueeze(1).expand(-1, N, -1), x, x, need_weights=False
)[0]
return out.permute(1, 0, 2) # LND -> NLD
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
d_model: int,
n_head: int,
mlp_ratio: float = 4.0,
ls_init_value: Optional[float] = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
is_cross_attention: bool = False,
):
super().__init__()
self.ln_1 = norm_layer(d_model)
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
if is_cross_attention:
self.ln_1_kv = norm_layer(d_model)
self.ln_2 = norm_layer(d_model)
mlp_width = int(d_model * mlp_ratio)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, mlp_width)),
("gelu", act_layer()),
("c_proj", nn.Linear(mlp_width, d_model))
]))
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
def attention(
self,
q_x: torch.Tensor,
k_x: Optional[torch.Tensor] = None,
v_x: Optional[torch.Tensor] = None,
attn_mask: Optional[torch.Tensor] = None,
):
k_x = k_x if k_x is not None else q_x
v_x = v_x if v_x is not None else q_x
attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None
return self.attn(
q_x, k_x, v_x, need_weights=False, attn_mask=attn_mask
)[0]
def forward(
self,
q_x: torch.Tensor,
k_x: Optional[torch.Tensor] = None,
v_x: Optional[torch.Tensor] = None,
attn_mask: Optional[torch.Tensor] = None,
):
k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None
v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None
x = q_x + self.ls_1(self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask))
x = x + self.ls_2(self.mlp(self.ln_2(x)))
return x
# From PyTorch internals
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable):
return x
return tuple(repeat(x, n))
return parse
to_2tuple = _ntuple(2)
def _expand_token(token, batch_size: int):
return token.view(1, 1, -1).expand(batch_size, -1, -1)
class Transformer(nn.Module):
def __init__(
self,
width: int,
layers: int,
heads: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
):
super().__init__()
self.width = width
self.layers = layers
self.grad_checkpointing = False
self.resblocks = nn.ModuleList([
ResidualAttentionBlock(
width,
heads,
mlp_ratio,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer)
for _ in range(layers)
])
def get_cast_dtype(self) -> torch.dtype:
if hasattr(self.resblocks[0].mlp.c_fc, 'int8_original_dtype'):
return self.resblocks[0].mlp.c_fc.int8_original_dtype
return self.resblocks[0].mlp.c_fc.weight.dtype
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
for r in self.resblocks:
if self.grad_checkpointing and not torch.jit.is_scripting():
# TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372
x = checkpoint(r, x, None, None, attn_mask)
else:
x = r(x, attn_mask=attn_mask)
return x
class JapaneseCLIPVisionTransformer(nn.Module):
output_tokens: torch.jit.Final[bool]
def __init__(
self,
image_size: int,
patch_size: int,
width: int,
layers: int,
heads: int,
mlp_ratio: float,
ls_init_value: float = None,
attentional_pool: bool = False,
attn_pooler_queries: int = 256,
attn_pooler_heads: int = 8,
output_dim: int = 512,
patch_dropout: float = 0.,
no_ln_pre: bool = False,
pool_type: str = 'tok',
final_ln_after_pool: bool = False,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
output_tokens: bool = False,
**kwargs,
):
super().__init__()
assert pool_type in ('tok', 'avg', 'none')
self.output_tokens = output_tokens
image_height, image_width = self.image_size = to_2tuple(image_size)
patch_height, patch_width = self.patch_size = to_2tuple(patch_size)
self.grid_size = (image_height // patch_height, image_width // patch_width)
self.final_ln_after_pool = final_ln_after_pool # currently ignored w/ attn pool enabled
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
# class embeddings and positional embeddings
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(
scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
self.ln_pre = nn.Identity() if no_ln_pre else norm_layer(width)
self.transformer = Transformer(
width,
layers,
heads,
mlp_ratio,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
)
if attentional_pool:
if isinstance(attentional_pool, str):
self.attn_pool_type = attentional_pool
self.pool_type = 'none'
if attentional_pool in ('parallel', 'cascade'):
self.attn_pool = AttentionalPooler(
output_dim,
width,
n_head=attn_pooler_heads,
n_queries=attn_pooler_queries,
)
self.attn_pool_contrastive = AttentionalPooler(
output_dim,
width,
n_head=attn_pooler_heads,
n_queries=1,
)
else:
assert False
else:
self.attn_pool_type = ''
self.pool_type = pool_type
self.attn_pool = AttentionalPooler(
output_dim,
width,
n_head=attn_pooler_heads,
n_queries=attn_pooler_queries,
)
self.attn_pool_contrastive = None
pool_dim = output_dim
else:
self.attn_pool = None
pool_dim = width
self.pool_type = pool_type
self.ln_post = norm_layer(pool_dim)
self.proj = nn.Parameter(scale * torch.randn(pool_dim, output_dim))
self.init_parameters()
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
for param in self.parameters():
param.requires_grad = False
if unlocked_groups != 0:
groups = [
[
self.conv1,
self.class_embedding,
self.positional_embedding,
self.ln_pre,
],
*self.transformer.resblocks[:-1],
[
self.transformer.resblocks[-1],
self.ln_post,
],
self.proj,
]
def _unlock(x):
if isinstance(x, Sequence):
for g in x:
_unlock(g)
else:
if isinstance(x, torch.nn.Parameter):
x.requires_grad = True
else:
for p in x.parameters():
p.requires_grad = True
_unlock(groups[-unlocked_groups:])
def init_parameters(self):
# FIXME OpenAI CLIP did not define an init for the VisualTransformer
# TODO experiment if default PyTorch init, below, or alternate init is best.
# nn.init.normal_(self.class_embedding, std=self.scale)
# nn.init.normal_(self.positional_embedding, std=self.scale)
#
# proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
# attn_std = self.transformer.width ** -0.5
# fc_std = (2 * self.transformer.width) ** -0.5
# for block in self.transformer.resblocks:
# nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
# nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
# nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
# nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
#
# if self.text_projection is not None:
# nn.init.normal_(self.text_projection, std=self.scale)
pass
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.transformer.grad_checkpointing = enable
def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
if self.pool_type == 'avg':
pooled, tokens = x[:, 1:].mean(dim=1), x[:, 1:]
elif self.pool_type == 'tok':
pooled, tokens = x[:, 0], x[:, 1:]
else:
pooled = tokens = x
return pooled, tokens
def forward(self, x: torch.Tensor):
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
# class embeddings and positional embeddings
x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
# shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.patch_dropout(x)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
if self.attn_pool is not None:
if self.attn_pool_contrastive is not None:
# This is untested, WIP pooling that should match paper
x = self.ln_post(x) # TBD LN first or separate one after each pool?
tokens = self.attn_pool(x)
if self.attn_pool_type == 'parallel':
pooled = self.attn_pool_contrastive(x)
else:
assert self.attn_pool_type == 'cascade'
pooled = self.attn_pool_contrastive(tokens)
else:
# this is the original OpenCLIP CoCa setup, does not match paper
x = self.attn_pool(x)
x = self.ln_post(x)
pooled, tokens = self._global_pool(x)
elif self.final_ln_after_pool:
pooled, tokens = self._global_pool(x)
pooled = self.ln_post(pooled)
else:
x = self.ln_post(x)
pooled, tokens = self._global_pool(x)
if self.proj is not None:
pooled = pooled @ self.proj
if self.output_tokens:
return pooled, tokens
return pooled
class JapaneseCLIPModel(PreTrainedModel):
config_class = JapaneseCLIPConfig
def __init__(self, config: JapaneseCLIPConfig):
super().__init__(config)
text_config = config.text_config
vision_config = config.vision_config
self.image_encoder = JapaneseCLIPVisionTransformer(
**vision_config.to_dict()
)
self.text_encoder = AutoModel.from_config(text_config, add_pooling_layer=False)
hidden_size = text_config.hidden_size
self.projection_dim = self.image_encoder.output_dim
self.text_projection = nn.Linear(hidden_size, self.projection_dim, bias=False)
self.logit_scale = nn.Parameter(torch.ones([]) * math.log(1 / 0.07))
self.max_length = config.max_length
self.position_ids = list(range(0, self.max_length))
def _create_position_id_tensor(self, batch_size: int) -> torch.LongTensor:
# rinna/japanese-roberta-base requires providing custom position ids
# see: https://huggingface.co./rinna/japanese-roberta-base#note-3-provide-position_ids-as-an-argument-explicitly
return torch.LongTensor([self.position_ids for _ in range(batch_size)])
def get_image_features(self, pixel_values: torch.FloatTensor) -> torch.FloatTensor:
return self.image_encoder(pixel_values) # (batch_size, hidden_dim)
def get_text_features(
self, input_ids: torch.Tensor, position_ids: torch.Tensor = None
) -> torch.FloatTensor:
if position_ids is None:
position_ids = self._create_position_id_tensor(input_ids.size(0)).to(
input_ids.device
)
last_hidden_state = self.text_encoder(
input_ids=input_ids,
position_ids=position_ids,
output_hidden_states=True,
return_dict=True,
).hidden_states[
-1
] # (batch_size, tokens, embed_dim)
pooled_output = last_hidden_state[:, 0, :] # (batch_size, embed_dim)
return self.text_projection(pooled_output) # (batch_size, hidden_dim)
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.Tensor,
position_ids: torch.Tensor = None,
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
"""
DDPを使うときはこのメソッドを経由しなければならない
他のメソッドで得られた勾配はGPU間で同期されない
"""
image_features = self.get_image_features(pixel_values)
text_features = self.get_text_features(input_ids, position_ids)
return image_features, text_features, self.logit_scale |