--- library_name: peft model-index: - name: gembode-7b results: - task: type: text-generation name: Text Generation dataset: name: ENEM Challenge (No Images) type: eduagarcia/enem_challenge split: train args: num_few_shot: 3 metrics: - type: acc value: 66.9 name: accuracy source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BLUEX (No Images) type: eduagarcia-temp/BLUEX_without_images split: train args: num_few_shot: 3 metrics: - type: acc value: 57.16 name: accuracy source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: OAB Exams type: eduagarcia/oab_exams split: train args: num_few_shot: 3 metrics: - type: acc value: 45.47 name: accuracy source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 RTE type: assin2 split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 86.61 name: f1-macro source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 STS type: eduagarcia/portuguese_benchmark split: test args: num_few_shot: 15 metrics: - type: pearson value: 71.39 name: pearson source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: FaQuAD NLI type: ruanchaves/faquad-nli split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 67.4 name: f1-macro source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HateBR Binary type: ruanchaves/hatebr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 79.81 name: f1-macro source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: PT Hate Speech Binary type: hate_speech_portuguese split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 63.75 name: f1-macro source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: tweetSentBR type: eduagarcia/tweetsentbr_fewshot split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 65.49 name: f1-macro source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard --- # gembode-7b
GemmBode é um modelo de linguagem ajustado para o idioma português, desenvolvido a partir do modelo Gemma-7b fornecido pela [Google](https://huggingface.co./google/gemma-7b). ## Características Principais - **Modelo Base:** Gemma-7b, criado pela Google, com 7 bilhões de parâmetros. - **Dataset para Fine-tuning:** [UltraAlpaca](https://huggingface.co./datasets/recogna-nlp/ultra-alpaca-ptbr) - **Treinamento:** O treinamento foi realizado a partir do fine-tuning, com QLoRA do gemma-7b. # Resultados da avaliação do Open Portuguese LLM Leaderboard Detailed results can be found [here](https://huggingface.co./datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/recogna-nlp/gembode-7b) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard) | Metric | Value | |--------------------------|---------| |Average |**67.11**| |ENEM Challenge (No Images)| 66.90| |BLUEX (No Images) | 57.16| |OAB Exams | 45.47| |Assin2 RTE | 86.61| |Assin2 STS | 71.39| |FaQuAD NLI | 67.40| |HateBR Binary | 79.81| |PT Hate Speech Binary | 63.75| |tweetSentBR | 65.49|