rbhatia46 commited on
Commit
90e4583
1 Parent(s): adea8d8

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,879 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mixedbread-ai/mxbai-embed-large-v1
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:580
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: In response to hypothetical economic scenarios presented by the
35
+ Federal Reserve, Wells Fargo formulated a capital action plan. This was done as
36
+ a part of the CCAR (Comprehensive Capital Analysis and Review) process. The scenarios
37
+ tested included a hypothetical severe global recession which, at its most stressful
38
+ point, reduces our Pre-Provision Net Revenue (PPNR) to negative levels for four
39
+ consecutive quarters.
40
+ sentences:
41
+ - What is the proposed dividend per share for the shareholders of Apple Inc. for
42
+ the financial year ending in 2023?
43
+ - What steps has Wells Fargo undertaken to sustain in the event of a severe global
44
+ recession?
45
+ - What was the total net income for Intel in 2021?
46
+ - source_sentence: Microsoft Corporation has been paying consistent dividends to its
47
+ shareholders on a quarterly basis. The company's Board of Directors reviews the
48
+ dividend policy on a regular basis and plans to continue paying quarterly dividends,
49
+ subject to capital availability and financial conditions
50
+ sentences:
51
+ - What did Amazon.com, Inc. anticipate regarding its free cash flows in the future?
52
+ - What is Tesla's outlook for 2024 in terms of vehicle production?
53
+ - What is Microsoft Corporation's dividend policy?
54
+ - source_sentence: In the second quarter of 2023, Tesla's automotive revenue increased
55
+ by 58% compared to the same period previous year. These results were primarily
56
+ driven by increased vehicle deliveries and expansion in the China market.
57
+ sentences:
58
+ - What action did the Federal Reserve take to address the inflation surge in 2027?
59
+ - What revenue did Apple Inc. report in the first quarter of 2021?
60
+ - How did Tesla's automotive revenue perform in the second quarter of 2023?
61
+ - source_sentence: Intel Corporation is an American multinational corporation and
62
+ technology company headquartered in Santa Clara, California. It's primarily known
63
+ for designing and manufacturing semiconductors and various technology solutions,
64
+ including processors for computer systems and servers, integrated digital technology
65
+ platforms, and system-on-chip units for gateways.
66
+ sentences:
67
+ - What is Intel's main area of business?
68
+ - What was the revenue growth percentage of Amazon in the second quarter of 2024?
69
+ - How much capital expenditure did Amazon.com report in 2025?
70
+ - source_sentence: In 2023, EnergyCorp declared a dividend of $2.5 per share.
71
+ sentences:
72
+ - How did Amazon’s shift to one-day prime delivery affect its operational costs
73
+ in 2023?
74
+ - What dividend did the EnergyCorp pay to its shareholders in 2023?
75
+ - What was the profit margin of Airbus in the year 2025?
76
+ model-index:
77
+ - name: Bmixedbread-ai/mxbai-embed-large-v1 Financial Matryoshka
78
+ results:
79
+ - task:
80
+ type: information-retrieval
81
+ name: Information Retrieval
82
+ dataset:
83
+ name: dim 1024
84
+ type: dim_1024
85
+ metrics:
86
+ - type: cosine_accuracy@1
87
+ value: 0.8923076923076924
88
+ name: Cosine Accuracy@1
89
+ - type: cosine_accuracy@3
90
+ value: 0.9692307692307692
91
+ name: Cosine Accuracy@3
92
+ - type: cosine_accuracy@5
93
+ value: 0.9692307692307692
94
+ name: Cosine Accuracy@5
95
+ - type: cosine_accuracy@10
96
+ value: 0.9846153846153847
97
+ name: Cosine Accuracy@10
98
+ - type: cosine_precision@1
99
+ value: 0.8923076923076924
100
+ name: Cosine Precision@1
101
+ - type: cosine_precision@3
102
+ value: 0.32307692307692304
103
+ name: Cosine Precision@3
104
+ - type: cosine_precision@5
105
+ value: 0.1938461538461538
106
+ name: Cosine Precision@5
107
+ - type: cosine_precision@10
108
+ value: 0.09846153846153843
109
+ name: Cosine Precision@10
110
+ - type: cosine_recall@1
111
+ value: 0.8923076923076924
112
+ name: Cosine Recall@1
113
+ - type: cosine_recall@3
114
+ value: 0.9692307692307692
115
+ name: Cosine Recall@3
116
+ - type: cosine_recall@5
117
+ value: 0.9692307692307692
118
+ name: Cosine Recall@5
119
+ - type: cosine_recall@10
120
+ value: 0.9846153846153847
121
+ name: Cosine Recall@10
122
+ - type: cosine_ndcg@10
123
+ value: 0.941940347600734
124
+ name: Cosine Ndcg@10
125
+ - type: cosine_mrr@10
126
+ value: 0.927838827838828
127
+ name: Cosine Mrr@10
128
+ - type: cosine_map@100
129
+ value: 0.928083028083028
130
+ name: Cosine Map@100
131
+ - task:
132
+ type: information-retrieval
133
+ name: Information Retrieval
134
+ dataset:
135
+ name: dim 768
136
+ type: dim_768
137
+ metrics:
138
+ - type: cosine_accuracy@1
139
+ value: 0.8923076923076924
140
+ name: Cosine Accuracy@1
141
+ - type: cosine_accuracy@3
142
+ value: 0.9692307692307692
143
+ name: Cosine Accuracy@3
144
+ - type: cosine_accuracy@5
145
+ value: 0.9692307692307692
146
+ name: Cosine Accuracy@5
147
+ - type: cosine_accuracy@10
148
+ value: 0.9846153846153847
149
+ name: Cosine Accuracy@10
150
+ - type: cosine_precision@1
151
+ value: 0.8923076923076924
152
+ name: Cosine Precision@1
153
+ - type: cosine_precision@3
154
+ value: 0.32307692307692304
155
+ name: Cosine Precision@3
156
+ - type: cosine_precision@5
157
+ value: 0.1938461538461538
158
+ name: Cosine Precision@5
159
+ - type: cosine_precision@10
160
+ value: 0.09846153846153843
161
+ name: Cosine Precision@10
162
+ - type: cosine_recall@1
163
+ value: 0.8923076923076924
164
+ name: Cosine Recall@1
165
+ - type: cosine_recall@3
166
+ value: 0.9692307692307692
167
+ name: Cosine Recall@3
168
+ - type: cosine_recall@5
169
+ value: 0.9692307692307692
170
+ name: Cosine Recall@5
171
+ - type: cosine_recall@10
172
+ value: 0.9846153846153847
173
+ name: Cosine Recall@10
174
+ - type: cosine_ndcg@10
175
+ value: 0.9422922530434215
176
+ name: Cosine Ndcg@10
177
+ - type: cosine_mrr@10
178
+ value: 0.9282051282051282
179
+ name: Cosine Mrr@10
180
+ - type: cosine_map@100
181
+ value: 0.9284418145956608
182
+ name: Cosine Map@100
183
+ - task:
184
+ type: information-retrieval
185
+ name: Information Retrieval
186
+ dataset:
187
+ name: dim 512
188
+ type: dim_512
189
+ metrics:
190
+ - type: cosine_accuracy@1
191
+ value: 0.8923076923076924
192
+ name: Cosine Accuracy@1
193
+ - type: cosine_accuracy@3
194
+ value: 0.9692307692307692
195
+ name: Cosine Accuracy@3
196
+ - type: cosine_accuracy@5
197
+ value: 0.9692307692307692
198
+ name: Cosine Accuracy@5
199
+ - type: cosine_accuracy@10
200
+ value: 0.9846153846153847
201
+ name: Cosine Accuracy@10
202
+ - type: cosine_precision@1
203
+ value: 0.8923076923076924
204
+ name: Cosine Precision@1
205
+ - type: cosine_precision@3
206
+ value: 0.32307692307692304
207
+ name: Cosine Precision@3
208
+ - type: cosine_precision@5
209
+ value: 0.1938461538461538
210
+ name: Cosine Precision@5
211
+ - type: cosine_precision@10
212
+ value: 0.09846153846153843
213
+ name: Cosine Precision@10
214
+ - type: cosine_recall@1
215
+ value: 0.8923076923076924
216
+ name: Cosine Recall@1
217
+ - type: cosine_recall@3
218
+ value: 0.9692307692307692
219
+ name: Cosine Recall@3
220
+ - type: cosine_recall@5
221
+ value: 0.9692307692307692
222
+ name: Cosine Recall@5
223
+ - type: cosine_recall@10
224
+ value: 0.9846153846153847
225
+ name: Cosine Recall@10
226
+ - type: cosine_ndcg@10
227
+ value: 0.941940347600734
228
+ name: Cosine Ndcg@10
229
+ - type: cosine_mrr@10
230
+ value: 0.927838827838828
231
+ name: Cosine Mrr@10
232
+ - type: cosine_map@100
233
+ value: 0.928113553113553
234
+ name: Cosine Map@100
235
+ - task:
236
+ type: information-retrieval
237
+ name: Information Retrieval
238
+ dataset:
239
+ name: dim 256
240
+ type: dim_256
241
+ metrics:
242
+ - type: cosine_accuracy@1
243
+ value: 0.8923076923076924
244
+ name: Cosine Accuracy@1
245
+ - type: cosine_accuracy@3
246
+ value: 0.9692307692307692
247
+ name: Cosine Accuracy@3
248
+ - type: cosine_accuracy@5
249
+ value: 0.9692307692307692
250
+ name: Cosine Accuracy@5
251
+ - type: cosine_accuracy@10
252
+ value: 0.9846153846153847
253
+ name: Cosine Accuracy@10
254
+ - type: cosine_precision@1
255
+ value: 0.8923076923076924
256
+ name: Cosine Precision@1
257
+ - type: cosine_precision@3
258
+ value: 0.32307692307692304
259
+ name: Cosine Precision@3
260
+ - type: cosine_precision@5
261
+ value: 0.1938461538461538
262
+ name: Cosine Precision@5
263
+ - type: cosine_precision@10
264
+ value: 0.09846153846153843
265
+ name: Cosine Precision@10
266
+ - type: cosine_recall@1
267
+ value: 0.8923076923076924
268
+ name: Cosine Recall@1
269
+ - type: cosine_recall@3
270
+ value: 0.9692307692307692
271
+ name: Cosine Recall@3
272
+ - type: cosine_recall@5
273
+ value: 0.9692307692307692
274
+ name: Cosine Recall@5
275
+ - type: cosine_recall@10
276
+ value: 0.9846153846153847
277
+ name: Cosine Recall@10
278
+ - type: cosine_ndcg@10
279
+ value: 0.9416654482692324
280
+ name: Cosine Ndcg@10
281
+ - type: cosine_mrr@10
282
+ value: 0.9275641025641026
283
+ name: Cosine Mrr@10
284
+ - type: cosine_map@100
285
+ value: 0.9278846153846154
286
+ name: Cosine Map@100
287
+ - task:
288
+ type: information-retrieval
289
+ name: Information Retrieval
290
+ dataset:
291
+ name: dim 128
292
+ type: dim_128
293
+ metrics:
294
+ - type: cosine_accuracy@1
295
+ value: 0.8461538461538461
296
+ name: Cosine Accuracy@1
297
+ - type: cosine_accuracy@3
298
+ value: 0.9538461538461539
299
+ name: Cosine Accuracy@3
300
+ - type: cosine_accuracy@5
301
+ value: 0.9692307692307692
302
+ name: Cosine Accuracy@5
303
+ - type: cosine_accuracy@10
304
+ value: 0.9846153846153847
305
+ name: Cosine Accuracy@10
306
+ - type: cosine_precision@1
307
+ value: 0.8461538461538461
308
+ name: Cosine Precision@1
309
+ - type: cosine_precision@3
310
+ value: 0.31794871794871793
311
+ name: Cosine Precision@3
312
+ - type: cosine_precision@5
313
+ value: 0.1938461538461538
314
+ name: Cosine Precision@5
315
+ - type: cosine_precision@10
316
+ value: 0.09846153846153843
317
+ name: Cosine Precision@10
318
+ - type: cosine_recall@1
319
+ value: 0.8461538461538461
320
+ name: Cosine Recall@1
321
+ - type: cosine_recall@3
322
+ value: 0.9538461538461539
323
+ name: Cosine Recall@3
324
+ - type: cosine_recall@5
325
+ value: 0.9692307692307692
326
+ name: Cosine Recall@5
327
+ - type: cosine_recall@10
328
+ value: 0.9846153846153847
329
+ name: Cosine Recall@10
330
+ - type: cosine_ndcg@10
331
+ value: 0.9221774232775186
332
+ name: Cosine Ndcg@10
333
+ - type: cosine_mrr@10
334
+ value: 0.9012820512820513
335
+ name: Cosine Mrr@10
336
+ - type: cosine_map@100
337
+ value: 0.9016398330351819
338
+ name: Cosine Map@100
339
+ - task:
340
+ type: information-retrieval
341
+ name: Information Retrieval
342
+ dataset:
343
+ name: dim 64
344
+ type: dim_64
345
+ metrics:
346
+ - type: cosine_accuracy@1
347
+ value: 0.8153846153846154
348
+ name: Cosine Accuracy@1
349
+ - type: cosine_accuracy@3
350
+ value: 0.9692307692307692
351
+ name: Cosine Accuracy@3
352
+ - type: cosine_accuracy@5
353
+ value: 0.9846153846153847
354
+ name: Cosine Accuracy@5
355
+ - type: cosine_accuracy@10
356
+ value: 0.9846153846153847
357
+ name: Cosine Accuracy@10
358
+ - type: cosine_precision@1
359
+ value: 0.8153846153846154
360
+ name: Cosine Precision@1
361
+ - type: cosine_precision@3
362
+ value: 0.32307692307692304
363
+ name: Cosine Precision@3
364
+ - type: cosine_precision@5
365
+ value: 0.19692307692307687
366
+ name: Cosine Precision@5
367
+ - type: cosine_precision@10
368
+ value: 0.09846153846153843
369
+ name: Cosine Precision@10
370
+ - type: cosine_recall@1
371
+ value: 0.8153846153846154
372
+ name: Cosine Recall@1
373
+ - type: cosine_recall@3
374
+ value: 0.9692307692307692
375
+ name: Cosine Recall@3
376
+ - type: cosine_recall@5
377
+ value: 0.9846153846153847
378
+ name: Cosine Recall@5
379
+ - type: cosine_recall@10
380
+ value: 0.9846153846153847
381
+ name: Cosine Recall@10
382
+ - type: cosine_ndcg@10
383
+ value: 0.9123594012651499
384
+ name: Cosine Ndcg@10
385
+ - type: cosine_mrr@10
386
+ value: 0.8876923076923079
387
+ name: Cosine Mrr@10
388
+ - type: cosine_map@100
389
+ value: 0.8879622132253712
390
+ name: Cosine Map@100
391
+ ---
392
+
393
+ # Bmixedbread-ai/mxbai-embed-large-v1 Financial Matryoshka
394
+
395
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
396
+
397
+ ## Model Details
398
+
399
+ ### Model Description
400
+ - **Model Type:** Sentence Transformer
401
+ - **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision 990580e27d329c7408b3741ecff85876e128e203 -->
402
+ - **Maximum Sequence Length:** 512 tokens
403
+ - **Output Dimensionality:** 1024 tokens
404
+ - **Similarity Function:** Cosine Similarity
405
+ <!-- - **Training Dataset:** Unknown -->
406
+ - **Language:** en
407
+ - **License:** apache-2.0
408
+
409
+ ### Model Sources
410
+
411
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
412
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
413
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
414
+
415
+ ### Full Model Architecture
416
+
417
+ ```
418
+ SentenceTransformer(
419
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
420
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
421
+ )
422
+ ```
423
+
424
+ ## Usage
425
+
426
+ ### Direct Usage (Sentence Transformers)
427
+
428
+ First install the Sentence Transformers library:
429
+
430
+ ```bash
431
+ pip install -U sentence-transformers
432
+ ```
433
+
434
+ Then you can load this model and run inference.
435
+ ```python
436
+ from sentence_transformers import SentenceTransformer
437
+
438
+ # Download from the 🤗 Hub
439
+ model = SentenceTransformer("rbhatia46/mxbai-embed-large-v1-financial-rag-matryoshka")
440
+ # Run inference
441
+ sentences = [
442
+ 'In 2023, EnergyCorp declared a dividend of $2.5 per share.',
443
+ 'What dividend did the EnergyCorp pay to its shareholders in 2023?',
444
+ 'How did Amazon’s shift to one-day prime delivery affect its operational costs in 2023?',
445
+ ]
446
+ embeddings = model.encode(sentences)
447
+ print(embeddings.shape)
448
+ # [3, 1024]
449
+
450
+ # Get the similarity scores for the embeddings
451
+ similarities = model.similarity(embeddings, embeddings)
452
+ print(similarities.shape)
453
+ # [3, 3]
454
+ ```
455
+
456
+ <!--
457
+ ### Direct Usage (Transformers)
458
+
459
+ <details><summary>Click to see the direct usage in Transformers</summary>
460
+
461
+ </details>
462
+ -->
463
+
464
+ <!--
465
+ ### Downstream Usage (Sentence Transformers)
466
+
467
+ You can finetune this model on your own dataset.
468
+
469
+ <details><summary>Click to expand</summary>
470
+
471
+ </details>
472
+ -->
473
+
474
+ <!--
475
+ ### Out-of-Scope Use
476
+
477
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
478
+ -->
479
+
480
+ ## Evaluation
481
+
482
+ ### Metrics
483
+
484
+ #### Information Retrieval
485
+ * Dataset: `dim_1024`
486
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
487
+
488
+ | Metric | Value |
489
+ |:--------------------|:-----------|
490
+ | cosine_accuracy@1 | 0.8923 |
491
+ | cosine_accuracy@3 | 0.9692 |
492
+ | cosine_accuracy@5 | 0.9692 |
493
+ | cosine_accuracy@10 | 0.9846 |
494
+ | cosine_precision@1 | 0.8923 |
495
+ | cosine_precision@3 | 0.3231 |
496
+ | cosine_precision@5 | 0.1938 |
497
+ | cosine_precision@10 | 0.0985 |
498
+ | cosine_recall@1 | 0.8923 |
499
+ | cosine_recall@3 | 0.9692 |
500
+ | cosine_recall@5 | 0.9692 |
501
+ | cosine_recall@10 | 0.9846 |
502
+ | cosine_ndcg@10 | 0.9419 |
503
+ | cosine_mrr@10 | 0.9278 |
504
+ | **cosine_map@100** | **0.9281** |
505
+
506
+ #### Information Retrieval
507
+ * Dataset: `dim_768`
508
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
509
+
510
+ | Metric | Value |
511
+ |:--------------------|:-----------|
512
+ | cosine_accuracy@1 | 0.8923 |
513
+ | cosine_accuracy@3 | 0.9692 |
514
+ | cosine_accuracy@5 | 0.9692 |
515
+ | cosine_accuracy@10 | 0.9846 |
516
+ | cosine_precision@1 | 0.8923 |
517
+ | cosine_precision@3 | 0.3231 |
518
+ | cosine_precision@5 | 0.1938 |
519
+ | cosine_precision@10 | 0.0985 |
520
+ | cosine_recall@1 | 0.8923 |
521
+ | cosine_recall@3 | 0.9692 |
522
+ | cosine_recall@5 | 0.9692 |
523
+ | cosine_recall@10 | 0.9846 |
524
+ | cosine_ndcg@10 | 0.9423 |
525
+ | cosine_mrr@10 | 0.9282 |
526
+ | **cosine_map@100** | **0.9284** |
527
+
528
+ #### Information Retrieval
529
+ * Dataset: `dim_512`
530
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
531
+
532
+ | Metric | Value |
533
+ |:--------------------|:-----------|
534
+ | cosine_accuracy@1 | 0.8923 |
535
+ | cosine_accuracy@3 | 0.9692 |
536
+ | cosine_accuracy@5 | 0.9692 |
537
+ | cosine_accuracy@10 | 0.9846 |
538
+ | cosine_precision@1 | 0.8923 |
539
+ | cosine_precision@3 | 0.3231 |
540
+ | cosine_precision@5 | 0.1938 |
541
+ | cosine_precision@10 | 0.0985 |
542
+ | cosine_recall@1 | 0.8923 |
543
+ | cosine_recall@3 | 0.9692 |
544
+ | cosine_recall@5 | 0.9692 |
545
+ | cosine_recall@10 | 0.9846 |
546
+ | cosine_ndcg@10 | 0.9419 |
547
+ | cosine_mrr@10 | 0.9278 |
548
+ | **cosine_map@100** | **0.9281** |
549
+
550
+ #### Information Retrieval
551
+ * Dataset: `dim_256`
552
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
553
+
554
+ | Metric | Value |
555
+ |:--------------------|:-----------|
556
+ | cosine_accuracy@1 | 0.8923 |
557
+ | cosine_accuracy@3 | 0.9692 |
558
+ | cosine_accuracy@5 | 0.9692 |
559
+ | cosine_accuracy@10 | 0.9846 |
560
+ | cosine_precision@1 | 0.8923 |
561
+ | cosine_precision@3 | 0.3231 |
562
+ | cosine_precision@5 | 0.1938 |
563
+ | cosine_precision@10 | 0.0985 |
564
+ | cosine_recall@1 | 0.8923 |
565
+ | cosine_recall@3 | 0.9692 |
566
+ | cosine_recall@5 | 0.9692 |
567
+ | cosine_recall@10 | 0.9846 |
568
+ | cosine_ndcg@10 | 0.9417 |
569
+ | cosine_mrr@10 | 0.9276 |
570
+ | **cosine_map@100** | **0.9279** |
571
+
572
+ #### Information Retrieval
573
+ * Dataset: `dim_128`
574
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
575
+
576
+ | Metric | Value |
577
+ |:--------------------|:-----------|
578
+ | cosine_accuracy@1 | 0.8462 |
579
+ | cosine_accuracy@3 | 0.9538 |
580
+ | cosine_accuracy@5 | 0.9692 |
581
+ | cosine_accuracy@10 | 0.9846 |
582
+ | cosine_precision@1 | 0.8462 |
583
+ | cosine_precision@3 | 0.3179 |
584
+ | cosine_precision@5 | 0.1938 |
585
+ | cosine_precision@10 | 0.0985 |
586
+ | cosine_recall@1 | 0.8462 |
587
+ | cosine_recall@3 | 0.9538 |
588
+ | cosine_recall@5 | 0.9692 |
589
+ | cosine_recall@10 | 0.9846 |
590
+ | cosine_ndcg@10 | 0.9222 |
591
+ | cosine_mrr@10 | 0.9013 |
592
+ | **cosine_map@100** | **0.9016** |
593
+
594
+ #### Information Retrieval
595
+ * Dataset: `dim_64`
596
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
597
+
598
+ | Metric | Value |
599
+ |:--------------------|:----------|
600
+ | cosine_accuracy@1 | 0.8154 |
601
+ | cosine_accuracy@3 | 0.9692 |
602
+ | cosine_accuracy@5 | 0.9846 |
603
+ | cosine_accuracy@10 | 0.9846 |
604
+ | cosine_precision@1 | 0.8154 |
605
+ | cosine_precision@3 | 0.3231 |
606
+ | cosine_precision@5 | 0.1969 |
607
+ | cosine_precision@10 | 0.0985 |
608
+ | cosine_recall@1 | 0.8154 |
609
+ | cosine_recall@3 | 0.9692 |
610
+ | cosine_recall@5 | 0.9846 |
611
+ | cosine_recall@10 | 0.9846 |
612
+ | cosine_ndcg@10 | 0.9124 |
613
+ | cosine_mrr@10 | 0.8877 |
614
+ | **cosine_map@100** | **0.888** |
615
+
616
+ <!--
617
+ ## Bias, Risks and Limitations
618
+
619
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
620
+ -->
621
+
622
+ <!--
623
+ ### Recommendations
624
+
625
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
626
+ -->
627
+
628
+ ## Training Details
629
+
630
+ ### Training Dataset
631
+
632
+ #### Unnamed Dataset
633
+
634
+
635
+ * Size: 580 training samples
636
+ * Columns: <code>positive</code> and <code>anchor</code>
637
+ * Approximate statistics based on the first 1000 samples:
638
+ | | positive | anchor |
639
+ |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
640
+ | type | string | string |
641
+ | details | <ul><li>min: 16 tokens</li><li>mean: 44.21 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 17.5 tokens</li><li>max: 30 tokens</li></ul> |
642
+ * Samples:
643
+ | positive | anchor |
644
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------|
645
+ | <code>For the fiscal year 2020, Microsoft Corporation reported a net income of $44.3 billion, showing a 13% increase from the previous year.</code> | <code>What was the net income of Microsoft Corporation for the fiscal year 2020?</code> |
646
+ | <code>As of the latest financial report, Amazon has a current price to earnings ratio (P/E ratio) of 76.6.</code> | <code>What is Amazon's current P/E ratio according to their latest financial report?</code> |
647
+ | <code>Microsoft Corporation posted an EBITDA (Earnings Before Interest, Taxes, Depreciation, and Amortization) margin of approximately 47% in 2021, showcasing strong profitability.</code> | <code>What was Microsoft Corporation's EBITDA margin in 2021?</code> |
648
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
649
+ ```json
650
+ {
651
+ "loss": "MultipleNegativesRankingLoss",
652
+ "matryoshka_dims": [
653
+ 1024,
654
+ 768,
655
+ 512,
656
+ 256,
657
+ 128,
658
+ 64
659
+ ],
660
+ "matryoshka_weights": [
661
+ 1,
662
+ 1,
663
+ 1,
664
+ 1,
665
+ 1,
666
+ 1
667
+ ],
668
+ "n_dims_per_step": -1
669
+ }
670
+ ```
671
+
672
+ ### Training Hyperparameters
673
+ #### Non-Default Hyperparameters
674
+
675
+ - `eval_strategy`: epoch
676
+ - `per_device_train_batch_size`: 32
677
+ - `per_device_eval_batch_size`: 16
678
+ - `gradient_accumulation_steps`: 16
679
+ - `learning_rate`: 2e-05
680
+ - `num_train_epochs`: 4
681
+ - `lr_scheduler_type`: cosine
682
+ - `warmup_ratio`: 0.1
683
+ - `bf16`: True
684
+ - `tf32`: True
685
+ - `load_best_model_at_end`: True
686
+ - `optim`: adamw_torch_fused
687
+ - `batch_sampler`: no_duplicates
688
+
689
+ #### All Hyperparameters
690
+ <details><summary>Click to expand</summary>
691
+
692
+ - `overwrite_output_dir`: False
693
+ - `do_predict`: False
694
+ - `eval_strategy`: epoch
695
+ - `prediction_loss_only`: True
696
+ - `per_device_train_batch_size`: 32
697
+ - `per_device_eval_batch_size`: 16
698
+ - `per_gpu_train_batch_size`: None
699
+ - `per_gpu_eval_batch_size`: None
700
+ - `gradient_accumulation_steps`: 16
701
+ - `eval_accumulation_steps`: None
702
+ - `learning_rate`: 2e-05
703
+ - `weight_decay`: 0.0
704
+ - `adam_beta1`: 0.9
705
+ - `adam_beta2`: 0.999
706
+ - `adam_epsilon`: 1e-08
707
+ - `max_grad_norm`: 1.0
708
+ - `num_train_epochs`: 4
709
+ - `max_steps`: -1
710
+ - `lr_scheduler_type`: cosine
711
+ - `lr_scheduler_kwargs`: {}
712
+ - `warmup_ratio`: 0.1
713
+ - `warmup_steps`: 0
714
+ - `log_level`: passive
715
+ - `log_level_replica`: warning
716
+ - `log_on_each_node`: True
717
+ - `logging_nan_inf_filter`: True
718
+ - `save_safetensors`: True
719
+ - `save_on_each_node`: False
720
+ - `save_only_model`: False
721
+ - `restore_callback_states_from_checkpoint`: False
722
+ - `no_cuda`: False
723
+ - `use_cpu`: False
724
+ - `use_mps_device`: False
725
+ - `seed`: 42
726
+ - `data_seed`: None
727
+ - `jit_mode_eval`: False
728
+ - `use_ipex`: False
729
+ - `bf16`: True
730
+ - `fp16`: False
731
+ - `fp16_opt_level`: O1
732
+ - `half_precision_backend`: auto
733
+ - `bf16_full_eval`: False
734
+ - `fp16_full_eval`: False
735
+ - `tf32`: True
736
+ - `local_rank`: 0
737
+ - `ddp_backend`: None
738
+ - `tpu_num_cores`: None
739
+ - `tpu_metrics_debug`: False
740
+ - `debug`: []
741
+ - `dataloader_drop_last`: False
742
+ - `dataloader_num_workers`: 0
743
+ - `dataloader_prefetch_factor`: None
744
+ - `past_index`: -1
745
+ - `disable_tqdm`: False
746
+ - `remove_unused_columns`: True
747
+ - `label_names`: None
748
+ - `load_best_model_at_end`: True
749
+ - `ignore_data_skip`: False
750
+ - `fsdp`: []
751
+ - `fsdp_min_num_params`: 0
752
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
753
+ - `fsdp_transformer_layer_cls_to_wrap`: None
754
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
755
+ - `deepspeed`: None
756
+ - `label_smoothing_factor`: 0.0
757
+ - `optim`: adamw_torch_fused
758
+ - `optim_args`: None
759
+ - `adafactor`: False
760
+ - `group_by_length`: False
761
+ - `length_column_name`: length
762
+ - `ddp_find_unused_parameters`: None
763
+ - `ddp_bucket_cap_mb`: None
764
+ - `ddp_broadcast_buffers`: False
765
+ - `dataloader_pin_memory`: True
766
+ - `dataloader_persistent_workers`: False
767
+ - `skip_memory_metrics`: True
768
+ - `use_legacy_prediction_loop`: False
769
+ - `push_to_hub`: False
770
+ - `resume_from_checkpoint`: None
771
+ - `hub_model_id`: None
772
+ - `hub_strategy`: every_save
773
+ - `hub_private_repo`: False
774
+ - `hub_always_push`: False
775
+ - `gradient_checkpointing`: False
776
+ - `gradient_checkpointing_kwargs`: None
777
+ - `include_inputs_for_metrics`: False
778
+ - `eval_do_concat_batches`: True
779
+ - `fp16_backend`: auto
780
+ - `push_to_hub_model_id`: None
781
+ - `push_to_hub_organization`: None
782
+ - `mp_parameters`:
783
+ - `auto_find_batch_size`: False
784
+ - `full_determinism`: False
785
+ - `torchdynamo`: None
786
+ - `ray_scope`: last
787
+ - `ddp_timeout`: 1800
788
+ - `torch_compile`: False
789
+ - `torch_compile_backend`: None
790
+ - `torch_compile_mode`: None
791
+ - `dispatch_batches`: None
792
+ - `split_batches`: None
793
+ - `include_tokens_per_second`: False
794
+ - `include_num_input_tokens_seen`: False
795
+ - `neftune_noise_alpha`: None
796
+ - `optim_target_modules`: None
797
+ - `batch_eval_metrics`: False
798
+ - `batch_sampler`: no_duplicates
799
+ - `multi_dataset_batch_sampler`: proportional
800
+
801
+ </details>
802
+
803
+ ### Training Logs
804
+ | Epoch | Step | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
805
+ |:----------:|:-----:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
806
+ | 0.8421 | 1 | 0.9032 | 0.8846 | 0.9033 | 0.9109 | 0.8695 | 0.9186 |
807
+ | 1.6842 | 2 | 0.9121 | 0.8948 | 0.9174 | 0.9199 | 0.8777 | 0.9198 |
808
+ | 2.5263 | 3 | 0.9281 | 0.9013 | 0.9202 | 0.9281 | 0.8879 | 0.9204 |
809
+ | **3.3684** | **4** | **0.9281** | **0.9016** | **0.9279** | **0.9281** | **0.888** | **0.9284** |
810
+
811
+ * The bold row denotes the saved checkpoint.
812
+
813
+ ### Framework Versions
814
+ - Python: 3.10.6
815
+ - Sentence Transformers: 3.0.1
816
+ - Transformers: 4.41.2
817
+ - PyTorch: 2.1.2+cu121
818
+ - Accelerate: 0.31.0
819
+ - Datasets: 2.19.1
820
+ - Tokenizers: 0.19.1
821
+
822
+ ## Citation
823
+
824
+ ### BibTeX
825
+
826
+ #### Sentence Transformers
827
+ ```bibtex
828
+ @inproceedings{reimers-2019-sentence-bert,
829
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
830
+ author = "Reimers, Nils and Gurevych, Iryna",
831
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
832
+ month = "11",
833
+ year = "2019",
834
+ publisher = "Association for Computational Linguistics",
835
+ url = "https://arxiv.org/abs/1908.10084",
836
+ }
837
+ ```
838
+
839
+ #### MatryoshkaLoss
840
+ ```bibtex
841
+ @misc{kusupati2024matryoshka,
842
+ title={Matryoshka Representation Learning},
843
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
844
+ year={2024},
845
+ eprint={2205.13147},
846
+ archivePrefix={arXiv},
847
+ primaryClass={cs.LG}
848
+ }
849
+ ```
850
+
851
+ #### MultipleNegativesRankingLoss
852
+ ```bibtex
853
+ @misc{henderson2017efficient,
854
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
855
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
856
+ year={2017},
857
+ eprint={1705.00652},
858
+ archivePrefix={arXiv},
859
+ primaryClass={cs.CL}
860
+ }
861
+ ```
862
+
863
+ <!--
864
+ ## Glossary
865
+
866
+ *Clearly define terms in order to be accessible across audiences.*
867
+ -->
868
+
869
+ <!--
870
+ ## Model Card Authors
871
+
872
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
873
+ -->
874
+
875
+ <!--
876
+ ## Model Card Contact
877
+
878
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
879
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mixedbread-ai/mxbai-embed-large-v1",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": false,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e4009d71caf518182c937a9f2af920ce7e5605e580198931f67d4648a87828b
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff