--- base_model: sentence-transformers/all-mpnet-base-v2 datasets: [] language: - en library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:169213 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: This is bullshit. The US government requires taxes to be paid in USD. There's your intrinsic value. If you want to be compliant with the federal law, your business and you as an individual are required to convert assets or labor into USD to pay them. sentences: - we love face paint melbourne - how long to pay off debt - what is the difference between us tax and mls - source_sentence: '> There''s always another fresh-faced new grad with dollar signs in his eyes who doesn''t know enough to ask about outstanding shares, dilution, or preferences. They''ll learn soon enough. > Very few startups are looking for penny-ante ''investor'' employees who can only put <$100k. You''ll probably find that the majority of tech startups are looking for under $100k to get going. Check out kickstarter.com sometime. > Actual employees are lucky if they can properly value their options, let alone control how much it ends up being worth in the end. If you''re asked to put in work without being fully compensated, you are no longer an employee. You''re an investor. You need to change your way of thinking.' sentences: - how much money is needed to start a company - capital one interest rate - can you transfer abc tax directly to a customer - source_sentence: Let's suppose your friend gave your $100 and you invested all of it (plus your own money, $500) into one stock. Therefore, the total investment becomes $100 + $500 = $600. After few months, when you want to sell the stock or give back the money to your friend, check the percentage of profit/loss. So, let's assume you get 10% return on total investment of $600. Now, you have two choices. Either you exit the stock entirely, OR you just sell his portion. If you want to exit, sell everything and go home with $600 + 10% of 600 = $660. Out of $660, give you friend his initial capital + 10% of initial capital. Therefore, your friend will get $100 + 10% of $100 = $110. If you choose the later, to sell his portion, then you'll need to work everything opposite. Take his initial capital and add 10% of initial capital to it; which is $100 + 10% of $100 = $110. Sell the stocks that would be worth equivalent to that money and that's it. Similarly, you can apply the same logic if you broke his $100 into parts. Do the maths. sentences: - what do people think about getting a good job - how to tell how much to sell a stock after buying one - how to claim rrsp room allowance - source_sentence: '"You''re acting like my comments are inconsistent. They''re not. I think bitcoin''s price is primarily due to Chinese money being moved outside of China. I don''t think you can point to a price chart and say ""Look, that''s the Chinese money right there, and look, that part isn''t Chinese money"". That''s what I said already."' sentences: - bitcoin price in china - can i use tax act to file a spouse's tax - what to look at if house sells for an appraiser? - source_sentence: 'It''s simple, really: Practice. Fiscal responsibility is not a trick you can learn look up on Google, or a service you can buy from your accountant. Being responsible with your money is a skill that is learned over a lifetime. The only way to get better at it is to practice, and not get discouraged when you make mistakes.' sentences: - how long does it take for a loan to get paid interest - whatsapp to use with a foreigner - why do people have to be fiscally responsible model-index: - name: mpnet-base-financial-rag-matryoshka results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.1809635722679201 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.4935370152761457 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5734430082256169 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.663924794359577 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.1809635722679201 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1645123384253819 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11468860164512337 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06639247943595769 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1809635722679201 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4935370152761457 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5734430082256169 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.663924794359577 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.41746626575107176 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.33849252979687783 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.3464380043472146 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.19036427732079905 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.4900117508813161 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5687426556991775 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6533490011750881 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.19036427732079905 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.16333725029377202 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11374853113983546 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06533490011750881 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.19036427732079905 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4900117508813161 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5687426556991775 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6533490011750881 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4174472433498665 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3417030384421691 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.35038294448729146 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.1797884841363102 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.47473560517038776 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.54524089306698 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6439482961222092 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.1797884841363102 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.15824520172346257 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.10904817861339598 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06439482961222091 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1797884841363102 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.47473560517038776 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.54524089306698 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6439482961222092 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4067526935952037 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3308208829947965 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.33951940009649473 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.18566392479435959 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.4535840188014101 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5240893066980024 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6216216216216216 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.18566392479435959 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.15119467293380337 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.10481786133960047 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06216216216216215 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.18566392479435959 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4535840188014101 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5240893066980024 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6216216216216216 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.39600584846785714 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.324298211254733 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.33327512340163784 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.16333725029377202 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.42420681551116335 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.491186839012926 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5781433607520564 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.16333725029377202 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.14140227183705445 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.09823736780258518 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05781433607520563 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.16333725029377202 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.42420681551116335 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.491186839012926 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5781433607520564 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.36616361619562976 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.2984467386641303 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.3078022299669783 name: Cosine Map@100 --- # mpnet-base-financial-rag-matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) - **Maximum Sequence Length:** 384 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("rbhatia46/mpnet-base-financial-rag-matryoshka") # Run inference sentences = [ "It's simple, really: Practice. Fiscal responsibility is not a trick you can learn look up on Google, or a service you can buy from your accountant. Being responsible with your money is a skill that is learned over a lifetime. The only way to get better at it is to practice, and not get discouraged when you make mistakes.", 'why do people have to be fiscally responsible', 'how long does it take for a loan to get paid interest', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.181 | | cosine_accuracy@3 | 0.4935 | | cosine_accuracy@5 | 0.5734 | | cosine_accuracy@10 | 0.6639 | | cosine_precision@1 | 0.181 | | cosine_precision@3 | 0.1645 | | cosine_precision@5 | 0.1147 | | cosine_precision@10 | 0.0664 | | cosine_recall@1 | 0.181 | | cosine_recall@3 | 0.4935 | | cosine_recall@5 | 0.5734 | | cosine_recall@10 | 0.6639 | | cosine_ndcg@10 | 0.4175 | | cosine_mrr@10 | 0.3385 | | **cosine_map@100** | **0.3464** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1904 | | cosine_accuracy@3 | 0.49 | | cosine_accuracy@5 | 0.5687 | | cosine_accuracy@10 | 0.6533 | | cosine_precision@1 | 0.1904 | | cosine_precision@3 | 0.1633 | | cosine_precision@5 | 0.1137 | | cosine_precision@10 | 0.0653 | | cosine_recall@1 | 0.1904 | | cosine_recall@3 | 0.49 | | cosine_recall@5 | 0.5687 | | cosine_recall@10 | 0.6533 | | cosine_ndcg@10 | 0.4174 | | cosine_mrr@10 | 0.3417 | | **cosine_map@100** | **0.3504** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1798 | | cosine_accuracy@3 | 0.4747 | | cosine_accuracy@5 | 0.5452 | | cosine_accuracy@10 | 0.6439 | | cosine_precision@1 | 0.1798 | | cosine_precision@3 | 0.1582 | | cosine_precision@5 | 0.109 | | cosine_precision@10 | 0.0644 | | cosine_recall@1 | 0.1798 | | cosine_recall@3 | 0.4747 | | cosine_recall@5 | 0.5452 | | cosine_recall@10 | 0.6439 | | cosine_ndcg@10 | 0.4068 | | cosine_mrr@10 | 0.3308 | | **cosine_map@100** | **0.3395** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1857 | | cosine_accuracy@3 | 0.4536 | | cosine_accuracy@5 | 0.5241 | | cosine_accuracy@10 | 0.6216 | | cosine_precision@1 | 0.1857 | | cosine_precision@3 | 0.1512 | | cosine_precision@5 | 0.1048 | | cosine_precision@10 | 0.0622 | | cosine_recall@1 | 0.1857 | | cosine_recall@3 | 0.4536 | | cosine_recall@5 | 0.5241 | | cosine_recall@10 | 0.6216 | | cosine_ndcg@10 | 0.396 | | cosine_mrr@10 | 0.3243 | | **cosine_map@100** | **0.3333** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1633 | | cosine_accuracy@3 | 0.4242 | | cosine_accuracy@5 | 0.4912 | | cosine_accuracy@10 | 0.5781 | | cosine_precision@1 | 0.1633 | | cosine_precision@3 | 0.1414 | | cosine_precision@5 | 0.0982 | | cosine_precision@10 | 0.0578 | | cosine_recall@1 | 0.1633 | | cosine_recall@3 | 0.4242 | | cosine_recall@5 | 0.4912 | | cosine_recall@10 | 0.5781 | | cosine_ndcg@10 | 0.3662 | | cosine_mrr@10 | 0.2984 | | **cosine_map@100** | **0.3078** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 169,213 training samples * Columns: positive and anchor * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | positive | anchor | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------| | International Trade, the exchange of goods and services between nations. “Goods” can be defined as finished products, as intermediate goods used in producing other goods, or as raw materials such as minerals, agricultural products, and other such commodities. International trade commerce enables a nation to specialize in those goods it can produce most cheaply and efficiently, and sell those that are surplus to its requirements. Trade also enables a country to consume more than it would be able to produce if it depended only on its own resources. Finally, trade encourages economic development by increasing the size of the market to which products can be sold. Trade has always been the major force behind the economic relations among nations; it is a measure of national strength. | what does international trade | | My wife and I meet in the first few days of each month to create a budget for the coming month. During that meeting we reconcile any spending for the previous month and make sure the amount money in our accounts matches the amount of money in our budget record to the penny. (We use an excel spreadsheet, how you track it matters less than the need to track it and see how much you spent in each category during the previous month.) After we have have reviewed the previous month's spending, we allocate money we made during that previous month to each of the categories. What categories you track and how granular you are is less important than regularly seeing how much you spend so that you can evaluate whether your spending is really matching your priorities. We keep a running total for each category so if we go over on groceries one month, then the following month we have to add more to bring the category back to black as well as enough for our anticipated needs in the coming month. If there is one category that we are consistently underestimating (or overestimating) we talk about why. If there are large purchases that we are planning in the coming month, or even in a few months, we talk about them, why we want them, and we talk about how much we're planning to spend. If we want a new TV or to go on a trip, we may start adding money to the category with no plans to spend in the coming month. The biggest benefit to this process has been that we don't make a lot of impulse purchases, or if we do, they are for small dollar amounts. The simple need to explain what I want and why means I have to put the thought into it myself, and I talk myself out of a lot of purchases during that train of thought. The time spent regularly evaluating what we get for our money has cut waste that wasn't really bringing much happiness. We still buy what we want, but we agree that we want it first. | how to make a budget | | I just finished my bachelor and I'm doing my masters in Computer Science at a french school in Quebec. I consider myself being in the top 5% and I have an excellent curriculum, having studied abroad, learned 4 languages, participated in student committees, etc. I'm leaning towards IT or business strategy/development...but I'm not sure yet. I guess I'm not that prepared, that's why I wanted a little help. | what school do you want to attend for a masters | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 10 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:----------:|:--------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.0303 | 10 | 2.2113 | - | - | - | - | - | | 0.0605 | 20 | 2.1051 | - | - | - | - | - | | 0.0908 | 30 | 1.9214 | - | - | - | - | - | | 0.1210 | 40 | 1.744 | - | - | - | - | - | | 0.1513 | 50 | 1.5873 | - | - | - | - | - | | 0.1815 | 60 | 1.3988 | - | - | - | - | - | | 0.2118 | 70 | 1.263 | - | - | - | - | - | | 0.2421 | 80 | 1.1082 | - | - | - | - | - | | 0.2723 | 90 | 1.0061 | - | - | - | - | - | | 0.3026 | 100 | 1.0127 | - | - | - | - | - | | 0.3328 | 110 | 0.8644 | - | - | - | - | - | | 0.3631 | 120 | 0.8006 | - | - | - | - | - | | 0.3933 | 130 | 0.8067 | - | - | - | - | - | | 0.4236 | 140 | 0.7624 | - | - | - | - | - | | 0.4539 | 150 | 0.799 | - | - | - | - | - | | 0.4841 | 160 | 0.7025 | - | - | - | - | - | | 0.5144 | 170 | 0.7467 | - | - | - | - | - | | 0.5446 | 180 | 0.7509 | - | - | - | - | - | | 0.5749 | 190 | 0.7057 | - | - | - | - | - | | 0.6051 | 200 | 0.6929 | - | - | - | - | - | | 0.6354 | 210 | 0.6948 | - | - | - | - | - | | 0.6657 | 220 | 0.6477 | - | - | - | - | - | | 0.6959 | 230 | 0.6562 | - | - | - | - | - | | 0.7262 | 240 | 0.6278 | - | - | - | - | - | | 0.7564 | 250 | 0.6249 | - | - | - | - | - | | 0.7867 | 260 | 0.6057 | - | - | - | - | - | | 0.8169 | 270 | 0.6258 | - | - | - | - | - | | 0.8472 | 280 | 0.5007 | - | - | - | - | - | | 0.8775 | 290 | 0.5998 | - | - | - | - | - | | 0.9077 | 300 | 0.5958 | - | - | - | - | - | | 0.9380 | 310 | 0.5568 | - | - | - | - | - | | 0.9682 | 320 | 0.5236 | - | - | - | - | - | | 0.9985 | 330 | 0.6239 | 0.3189 | 0.3389 | 0.3645 | 0.3046 | 0.3700 | | 1.0287 | 340 | 0.5106 | - | - | - | - | - | | 1.0590 | 350 | 0.6022 | - | - | - | - | - | | 1.0893 | 360 | 0.5822 | - | - | - | - | - | | 1.1195 | 370 | 0.5094 | - | - | - | - | - | | 1.1498 | 380 | 0.5037 | - | - | - | - | - | | 1.1800 | 390 | 0.5415 | - | - | - | - | - | | 1.2103 | 400 | 0.5011 | - | - | - | - | - | | 1.2405 | 410 | 0.4571 | - | - | - | - | - | | 1.2708 | 420 | 0.4587 | - | - | - | - | - | | 1.3011 | 430 | 0.5065 | - | - | - | - | - | | 1.3313 | 440 | 0.4589 | - | - | - | - | - | | 1.3616 | 450 | 0.4165 | - | - | - | - | - | | 1.3918 | 460 | 0.4215 | - | - | - | - | - | | 1.4221 | 470 | 0.4302 | - | - | - | - | - | | 1.4523 | 480 | 0.4556 | - | - | - | - | - | | 1.4826 | 490 | 0.3793 | - | - | - | - | - | | 1.5129 | 500 | 0.4586 | - | - | - | - | - | | 1.5431 | 510 | 0.4327 | - | - | - | - | - | | 1.5734 | 520 | 0.4207 | - | - | - | - | - | | 1.6036 | 530 | 0.4042 | - | - | - | - | - | | 1.6339 | 540 | 0.4019 | - | - | - | - | - | | 1.6641 | 550 | 0.3804 | - | - | - | - | - | | 1.6944 | 560 | 0.3796 | - | - | - | - | - | | 1.7247 | 570 | 0.3476 | - | - | - | - | - | | 1.7549 | 580 | 0.3871 | - | - | - | - | - | | 1.7852 | 590 | 0.3602 | - | - | - | - | - | | 1.8154 | 600 | 0.3711 | - | - | - | - | - | | 1.8457 | 610 | 0.2879 | - | - | - | - | - | | 1.8759 | 620 | 0.3497 | - | - | - | - | - | | 1.9062 | 630 | 0.3346 | - | - | - | - | - | | 1.9365 | 640 | 0.3426 | - | - | - | - | - | | 1.9667 | 650 | 0.2977 | - | - | - | - | - | | 1.9970 | 660 | 0.3783 | - | - | - | - | - | | 2.0 | 661 | - | 0.3282 | 0.3485 | 0.3749 | 0.2960 | 0.3666 | | 2.0272 | 670 | 0.3012 | - | - | - | - | - | | 2.0575 | 680 | 0.3491 | - | - | - | - | - | | 2.0877 | 690 | 0.3589 | - | - | - | - | - | | 2.1180 | 700 | 0.2998 | - | - | - | - | - | | 2.1483 | 710 | 0.2925 | - | - | - | - | - | | 2.1785 | 720 | 0.3261 | - | - | - | - | - | | 2.2088 | 730 | 0.2917 | - | - | - | - | - | | 2.2390 | 740 | 0.2685 | - | - | - | - | - | | 2.2693 | 750 | 0.2674 | - | - | - | - | - | | 2.2995 | 760 | 0.3136 | - | - | - | - | - | | 2.3298 | 770 | 0.2631 | - | - | - | - | - | | 2.3601 | 780 | 0.2509 | - | - | - | - | - | | 2.3903 | 790 | 0.2518 | - | - | - | - | - | | 2.4206 | 800 | 0.2603 | - | - | - | - | - | | 2.4508 | 810 | 0.2773 | - | - | - | - | - | | 2.4811 | 820 | 0.245 | - | - | - | - | - | | 2.5113 | 830 | 0.2746 | - | - | - | - | - | | 2.5416 | 840 | 0.2747 | - | - | - | - | - | | 2.5719 | 850 | 0.2426 | - | - | - | - | - | | 2.6021 | 860 | 0.2593 | - | - | - | - | - | | 2.6324 | 870 | 0.2482 | - | - | - | - | - | | 2.6626 | 880 | 0.2344 | - | - | - | - | - | | 2.6929 | 890 | 0.2452 | - | - | - | - | - | | 2.7231 | 900 | 0.218 | - | - | - | - | - | | 2.7534 | 910 | 0.2319 | - | - | - | - | - | | 2.7837 | 920 | 0.2366 | - | - | - | - | - | | 2.8139 | 930 | 0.2265 | - | - | - | - | - | | 2.8442 | 940 | 0.1753 | - | - | - | - | - | | 2.8744 | 950 | 0.2153 | - | - | - | - | - | | 2.9047 | 960 | 0.201 | - | - | - | - | - | | 2.9349 | 970 | 0.2205 | - | - | - | - | - | | 2.9652 | 980 | 0.1933 | - | - | - | - | - | | 2.9955 | 990 | 0.2301 | - | - | - | - | - | | 2.9985 | 991 | - | 0.3285 | 0.3484 | 0.3636 | 0.2966 | 0.3660 | | 3.0257 | 1000 | 0.1946 | - | - | - | - | - | | 3.0560 | 1010 | 0.203 | - | - | - | - | - | | 3.0862 | 1020 | 0.2385 | - | - | - | - | - | | 3.1165 | 1030 | 0.1821 | - | - | - | - | - | | 3.1467 | 1040 | 0.1858 | - | - | - | - | - | | 3.1770 | 1050 | 0.2057 | - | - | - | - | - | | 3.2073 | 1060 | 0.18 | - | - | - | - | - | | 3.2375 | 1070 | 0.1751 | - | - | - | - | - | | 3.2678 | 1080 | 0.1539 | - | - | - | - | - | | 3.2980 | 1090 | 0.2153 | - | - | - | - | - | | 3.3283 | 1100 | 0.1739 | - | - | - | - | - | | 3.3585 | 1110 | 0.1621 | - | - | - | - | - | | 3.3888 | 1120 | 0.1541 | - | - | - | - | - | | 3.4191 | 1130 | 0.1642 | - | - | - | - | - | | 3.4493 | 1140 | 0.1893 | - | - | - | - | - | | 3.4796 | 1150 | 0.16 | - | - | - | - | - | | 3.5098 | 1160 | 0.1839 | - | - | - | - | - | | 3.5401 | 1170 | 0.1748 | - | - | - | - | - | | 3.5703 | 1180 | 0.1499 | - | - | - | - | - | | 3.6006 | 1190 | 0.1706 | - | - | - | - | - | | 3.6309 | 1200 | 0.1541 | - | - | - | - | - | | 3.6611 | 1210 | 0.1592 | - | - | - | - | - | | 3.6914 | 1220 | 0.1683 | - | - | - | - | - | | 3.7216 | 1230 | 0.1408 | - | - | - | - | - | | 3.7519 | 1240 | 0.1595 | - | - | - | - | - | | 3.7821 | 1250 | 0.1585 | - | - | - | - | - | | 3.8124 | 1260 | 0.1521 | - | - | - | - | - | | 3.8427 | 1270 | 0.1167 | - | - | - | - | - | | 3.8729 | 1280 | 0.1416 | - | - | - | - | - | | 3.9032 | 1290 | 0.1386 | - | - | - | - | - | | 3.9334 | 1300 | 0.1513 | - | - | - | - | - | | 3.9637 | 1310 | 0.1329 | - | - | - | - | - | | 3.9939 | 1320 | 0.1565 | - | - | - | - | - | | 4.0 | 1322 | - | 0.3270 | 0.3575 | 0.3636 | 0.3053 | 0.3660 | | 4.0242 | 1330 | 0.1253 | - | - | - | - | - | | 4.0545 | 1340 | 0.1325 | - | - | - | - | - | | 4.0847 | 1350 | 0.1675 | - | - | - | - | - | | 4.1150 | 1360 | 0.1291 | - | - | - | - | - | | 4.1452 | 1370 | 0.1259 | - | - | - | - | - | | 4.1755 | 1380 | 0.1359 | - | - | - | - | - | | 4.2057 | 1390 | 0.1344 | - | - | - | - | - | | 4.2360 | 1400 | 0.1187 | - | - | - | - | - | | 4.2663 | 1410 | 0.1062 | - | - | - | - | - | | 4.2965 | 1420 | 0.1653 | - | - | - | - | - | | 4.3268 | 1430 | 0.1164 | - | - | - | - | - | | 4.3570 | 1440 | 0.103 | - | - | - | - | - | | 4.3873 | 1450 | 0.1093 | - | - | - | - | - | | 4.4175 | 1460 | 0.1156 | - | - | - | - | - | | 4.4478 | 1470 | 0.1195 | - | - | - | - | - | | 4.4781 | 1480 | 0.1141 | - | - | - | - | - | | 4.5083 | 1490 | 0.1233 | - | - | - | - | - | | 4.5386 | 1500 | 0.1169 | - | - | - | - | - | | 4.5688 | 1510 | 0.0957 | - | - | - | - | - | | 4.5991 | 1520 | 0.1147 | - | - | - | - | - | | 4.6293 | 1530 | 0.1134 | - | - | - | - | - | | 4.6596 | 1540 | 0.1143 | - | - | - | - | - | | 4.6899 | 1550 | 0.1125 | - | - | - | - | - | | 4.7201 | 1560 | 0.0988 | - | - | - | - | - | | 4.7504 | 1570 | 0.1149 | - | - | - | - | - | | 4.7806 | 1580 | 0.1154 | - | - | - | - | - | | 4.8109 | 1590 | 0.1043 | - | - | - | - | - | | 4.8411 | 1600 | 0.0887 | - | - | - | - | - | | 4.8714 | 1610 | 0.0921 | - | - | - | - | - | | 4.9017 | 1620 | 0.1023 | - | - | - | - | - | | 4.9319 | 1630 | 0.1078 | - | - | - | - | - | | 4.9622 | 1640 | 0.1053 | - | - | - | - | - | | 4.9924 | 1650 | 0.1135 | - | - | - | - | - | | 4.9985 | 1652 | - | 0.3402 | 0.3620 | 0.3781 | 0.3236 | 0.3842 | | 5.0227 | 1660 | 0.0908 | - | - | - | - | - | | 5.0530 | 1670 | 0.0908 | - | - | - | - | - | | 5.0832 | 1680 | 0.1149 | - | - | - | - | - | | 5.1135 | 1690 | 0.0991 | - | - | - | - | - | | 5.1437 | 1700 | 0.0864 | - | - | - | - | - | | 5.1740 | 1710 | 0.0987 | - | - | - | - | - | | 5.2042 | 1720 | 0.0949 | - | - | - | - | - | | 5.2345 | 1730 | 0.0893 | - | - | - | - | - | | 5.2648 | 1740 | 0.0806 | - | - | - | - | - | | 5.2950 | 1750 | 0.1187 | - | - | - | - | - | | 5.3253 | 1760 | 0.0851 | - | - | - | - | - | | 5.3555 | 1770 | 0.0814 | - | - | - | - | - | | 5.3858 | 1780 | 0.0803 | - | - | - | - | - | | 5.4160 | 1790 | 0.0816 | - | - | - | - | - | | 5.4463 | 1800 | 0.0916 | - | - | - | - | - | | 5.4766 | 1810 | 0.0892 | - | - | - | - | - | | 5.5068 | 1820 | 0.0935 | - | - | - | - | - | | 5.5371 | 1830 | 0.0963 | - | - | - | - | - | | 5.5673 | 1840 | 0.0759 | - | - | - | - | - | | 5.5976 | 1850 | 0.0908 | - | - | - | - | - | | 5.6278 | 1860 | 0.0896 | - | - | - | - | - | | 5.6581 | 1870 | 0.0855 | - | - | - | - | - | | 5.6884 | 1880 | 0.0849 | - | - | - | - | - | | 5.7186 | 1890 | 0.0805 | - | - | - | - | - | | 5.7489 | 1900 | 0.0872 | - | - | - | - | - | | 5.7791 | 1910 | 0.0853 | - | - | - | - | - | | 5.8094 | 1920 | 0.0856 | - | - | - | - | - | | 5.8396 | 1930 | 0.064 | - | - | - | - | - | | 5.8699 | 1940 | 0.0748 | - | - | - | - | - | | 5.9002 | 1950 | 0.0769 | - | - | - | - | - | | 5.9304 | 1960 | 0.0868 | - | - | - | - | - | | 5.9607 | 1970 | 0.0842 | - | - | - | - | - | | 5.9909 | 1980 | 0.0825 | - | - | - | - | - | | 6.0 | 1983 | - | 0.3412 | 0.3542 | 0.3615 | 0.3171 | 0.3676 | | 6.0212 | 1990 | 0.073 | - | - | - | - | - | | 6.0514 | 2000 | 0.0708 | - | - | - | - | - | | 6.0817 | 2010 | 0.0908 | - | - | - | - | - | | 6.1120 | 2020 | 0.0807 | - | - | - | - | - | | 6.1422 | 2030 | 0.0665 | - | - | - | - | - | | 6.1725 | 2040 | 0.0773 | - | - | - | - | - | | 6.2027 | 2050 | 0.0798 | - | - | - | - | - | | 6.2330 | 2060 | 0.0743 | - | - | - | - | - | | 6.2632 | 2070 | 0.0619 | - | - | - | - | - | | 6.2935 | 2080 | 0.0954 | - | - | - | - | - | | 6.3238 | 2090 | 0.0682 | - | - | - | - | - | | 6.3540 | 2100 | 0.0594 | - | - | - | - | - | | 6.3843 | 2110 | 0.0621 | - | - | - | - | - | | 6.4145 | 2120 | 0.0674 | - | - | - | - | - | | 6.4448 | 2130 | 0.069 | - | - | - | - | - | | 6.4750 | 2140 | 0.0741 | - | - | - | - | - | | 6.5053 | 2150 | 0.0757 | - | - | - | - | - | | 6.5356 | 2160 | 0.0781 | - | - | - | - | - | | 6.5658 | 2170 | 0.0632 | - | - | - | - | - | | 6.5961 | 2180 | 0.07 | - | - | - | - | - | | 6.6263 | 2190 | 0.0767 | - | - | - | - | - | | 6.6566 | 2200 | 0.0674 | - | - | - | - | - | | 6.6868 | 2210 | 0.0704 | - | - | - | - | - | | 6.7171 | 2220 | 0.065 | - | - | - | - | - | | 6.7474 | 2230 | 0.066 | - | - | - | - | - | | 6.7776 | 2240 | 0.0752 | - | - | - | - | - | | 6.8079 | 2250 | 0.07 | - | - | - | - | - | | 6.8381 | 2260 | 0.0602 | - | - | - | - | - | | 6.8684 | 2270 | 0.0595 | - | - | - | - | - | | 6.8986 | 2280 | 0.065 | - | - | - | - | - | | 6.9289 | 2290 | 0.0677 | - | - | - | - | - | | 6.9592 | 2300 | 0.0708 | - | - | - | - | - | | 6.9894 | 2310 | 0.0651 | - | - | - | - | - | | **6.9985** | **2313** | **-** | **0.3484** | **0.3671** | **0.3645** | **0.3214** | **0.3773** | | 7.0197 | 2320 | 0.0657 | - | - | - | - | - | | 7.0499 | 2330 | 0.0588 | - | - | - | - | - | | 7.0802 | 2340 | 0.0701 | - | - | - | - | - | | 7.1104 | 2350 | 0.0689 | - | - | - | - | - | | 7.1407 | 2360 | 0.0586 | - | - | - | - | - | | 7.1710 | 2370 | 0.0626 | - | - | - | - | - | | 7.2012 | 2380 | 0.0723 | - | - | - | - | - | | 7.2315 | 2390 | 0.0602 | - | - | - | - | - | | 7.2617 | 2400 | 0.0541 | - | - | - | - | - | | 7.2920 | 2410 | 0.0823 | - | - | - | - | - | | 7.3222 | 2420 | 0.0592 | - | - | - | - | - | | 7.3525 | 2430 | 0.0535 | - | - | - | - | - | | 7.3828 | 2440 | 0.0548 | - | - | - | - | - | | 7.4130 | 2450 | 0.0598 | - | - | - | - | - | | 7.4433 | 2460 | 0.0554 | - | - | - | - | - | | 7.4735 | 2470 | 0.0663 | - | - | - | - | - | | 7.5038 | 2480 | 0.0645 | - | - | - | - | - | | 7.5340 | 2490 | 0.0638 | - | - | - | - | - | | 7.5643 | 2500 | 0.0574 | - | - | - | - | - | | 7.5946 | 2510 | 0.0608 | - | - | - | - | - | | 7.6248 | 2520 | 0.0633 | - | - | - | - | - | | 7.6551 | 2530 | 0.0576 | - | - | - | - | - | | 7.6853 | 2540 | 0.0613 | - | - | - | - | - | | 7.7156 | 2550 | 0.054 | - | - | - | - | - | | 7.7458 | 2560 | 0.0591 | - | - | - | - | - | | 7.7761 | 2570 | 0.0659 | - | - | - | - | - | | 7.8064 | 2580 | 0.0601 | - | - | - | - | - | | 7.8366 | 2590 | 0.053 | - | - | - | - | - | | 7.8669 | 2600 | 0.0536 | - | - | - | - | - | | 7.8971 | 2610 | 0.0581 | - | - | - | - | - | | 7.9274 | 2620 | 0.0603 | - | - | - | - | - | | 7.9576 | 2630 | 0.0661 | - | - | - | - | - | | 7.9879 | 2640 | 0.0588 | - | - | - | - | - | | 8.0 | 2644 | - | 0.3340 | 0.3533 | 0.3541 | 0.3163 | 0.3651 | | 8.0182 | 2650 | 0.0559 | - | - | - | - | - | | 8.0484 | 2660 | 0.0566 | - | - | - | - | - | | 8.0787 | 2670 | 0.0666 | - | - | - | - | - | | 8.1089 | 2680 | 0.0601 | - | - | - | - | - | | 8.1392 | 2690 | 0.0522 | - | - | - | - | - | | 8.1694 | 2700 | 0.0527 | - | - | - | - | - | | 8.1997 | 2710 | 0.0622 | - | - | - | - | - | | 8.2300 | 2720 | 0.0577 | - | - | - | - | - | | 8.2602 | 2730 | 0.0467 | - | - | - | - | - | | 8.2905 | 2740 | 0.0762 | - | - | - | - | - | | 8.3207 | 2750 | 0.0562 | - | - | - | - | - | | 8.3510 | 2760 | 0.0475 | - | - | - | - | - | | 8.3812 | 2770 | 0.0482 | - | - | - | - | - | | 8.4115 | 2780 | 0.0536 | - | - | - | - | - | | 8.4418 | 2790 | 0.0534 | - | - | - | - | - | | 8.4720 | 2800 | 0.0588 | - | - | - | - | - | | 8.5023 | 2810 | 0.0597 | - | - | - | - | - | | 8.5325 | 2820 | 0.0587 | - | - | - | - | - | | 8.5628 | 2830 | 0.0544 | - | - | - | - | - | | 8.5930 | 2840 | 0.0577 | - | - | - | - | - | | 8.6233 | 2850 | 0.0592 | - | - | - | - | - | | 8.6536 | 2860 | 0.0554 | - | - | - | - | - | | 8.6838 | 2870 | 0.0541 | - | - | - | - | - | | 8.7141 | 2880 | 0.0495 | - | - | - | - | - | | 8.7443 | 2890 | 0.0547 | - | - | - | - | - | | 8.7746 | 2900 | 0.0646 | - | - | - | - | - | | 8.8048 | 2910 | 0.0574 | - | - | - | - | - | | 8.8351 | 2920 | 0.0486 | - | - | - | - | - | | 8.8654 | 2930 | 0.0517 | - | - | - | - | - | | 8.8956 | 2940 | 0.0572 | - | - | - | - | - | | 8.9259 | 2950 | 0.0518 | - | - | - | - | - | | 8.9561 | 2960 | 0.0617 | - | - | - | - | - | | 8.9864 | 2970 | 0.0572 | - | - | - | - | - | | 8.9985 | 2974 | - | 0.3434 | 0.3552 | 0.3694 | 0.3253 | 0.3727 | | 9.0166 | 2980 | 0.0549 | - | - | - | - | - | | 9.0469 | 2990 | 0.0471 | - | - | - | - | - | | 9.0772 | 3000 | 0.0629 | - | - | - | - | - | | 9.1074 | 3010 | 0.058 | - | - | - | - | - | | 9.1377 | 3020 | 0.0531 | - | - | - | - | - | | 9.1679 | 3030 | 0.051 | - | - | - | - | - | | 9.1982 | 3040 | 0.0593 | - | - | - | - | - | | 9.2284 | 3050 | 0.056 | - | - | - | - | - | | 9.2587 | 3060 | 0.0452 | - | - | - | - | - | | 9.2890 | 3070 | 0.0672 | - | - | - | - | - | | 9.3192 | 3080 | 0.0547 | - | - | - | - | - | | 9.3495 | 3090 | 0.0477 | - | - | - | - | - | | 9.3797 | 3100 | 0.0453 | - | - | - | - | - | | 9.4100 | 3110 | 0.0542 | - | - | - | - | - | | 9.4402 | 3120 | 0.0538 | - | - | - | - | - | | 9.4705 | 3130 | 0.0552 | - | - | - | - | - | | 9.5008 | 3140 | 0.0586 | - | - | - | - | - | | 9.5310 | 3150 | 0.0567 | - | - | - | - | - | | 9.5613 | 3160 | 0.0499 | - | - | - | - | - | | 9.5915 | 3170 | 0.0598 | - | - | - | - | - | | 9.6218 | 3180 | 0.0546 | - | - | - | - | - | | 9.6520 | 3190 | 0.0513 | - | - | - | - | - | | 9.6823 | 3200 | 0.0549 | - | - | - | - | - | | 9.7126 | 3210 | 0.0513 | - | - | - | - | - | | 9.7428 | 3220 | 0.0536 | - | - | - | - | - | | 9.7731 | 3230 | 0.0588 | - | - | - | - | - | | 9.8033 | 3240 | 0.0531 | - | - | - | - | - | | 9.8336 | 3250 | 0.0472 | - | - | - | - | - | | 9.8638 | 3260 | 0.0486 | - | - | - | - | - | | 9.8941 | 3270 | 0.0576 | - | - | - | - | - | | 9.9244 | 3280 | 0.0526 | - | - | - | - | - | | 9.9546 | 3290 | 0.0568 | - | - | - | - | - | | 9.9849 | 3300 | 0.0617 | 0.3333 | 0.3395 | 0.3504 | 0.3078 | 0.3464 | * The bold row denotes the saved checkpoint.
### Framework Versions - Python: 3.10.8 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.2+cu121 - Accelerate: 0.33.0 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```