File size: 93,428 Bytes
0133738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
---
base_model: sentence-transformers/all-mpnet-base-v2
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:169213
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: This is bullshit. The US government requires taxes to be paid in
    USD. There's your intrinsic value. If you want to be compliant with the federal
    law, your business and you as an individual are required to convert assets or
    labor into USD to pay them.
  sentences:
  - we love face paint melbourne
  - how long to pay off debt
  - what is the difference between us tax and mls
- source_sentence: '>  There''s always another fresh-faced new grad with dollar
    signs in his eyes who doesn''t know enough to ask about outstanding shares, dilution,
    or preferences.  They''ll learn soon enough.  > Very few startups are looking
    for penny-ante ''investor'' employees who can only put <$100k.  You''ll probably
    find that the majority of tech startups are looking for under $100k to get going.
    Check out kickstarter.com sometime.  > Actual employees are lucky if they can
    properly value their options, let alone control how much it ends up being worth
    in the end.  If you''re asked to put in work without being fully compensated,
    you are no longer an employee. You''re an investor. You need to change your way
    of thinking.'
  sentences:
  - how much money is needed to start a company
  - capital one interest rate
  - can you transfer abc tax directly to a customer
- source_sentence: Let's suppose your friend gave your $100 and you invested all of
    it (plus your own money, $500) into one stock. Therefore, the total investment
    becomes $100 + $500 = $600. After few months, when you want to sell the stock
    or give back the money to your friend, check the percentage of profit/loss. So,
    let's assume you get 10% return on total investment of $600.  Now, you have two
    choices. Either you exit the stock entirely, OR you just sell his portion. If
    you want to exit, sell everything and go home with $600 + 10% of 600 = $660. Out
    of $660, give you friend his initial capital + 10% of initial capital. Therefore,
    your friend will get $100 + 10% of $100 = $110. If you choose the later, to sell
    his portion, then you'll need to work everything opposite. Take his initial capital
    and add 10% of initial capital to it; which is $100 + 10% of $100 = $110. Sell
    the stocks that would be worth equivalent to that money and that's it. Similarly,
    you can apply the same logic if you broke his $100 into parts. Do the maths.
  sentences:
  - what do people think about getting a good job
  - how to tell how much to sell a stock after buying one
  - how to claim rrsp room allowance
- source_sentence: '"You''re acting like my comments are inconsistent. They''re not.  I
    think bitcoin''s price is primarily due to Chinese money being moved outside of
    China. I don''t think you can point to a price chart and say ""Look, that''s the
    Chinese money right there, and look, that part isn''t Chinese money"". That''s
    what I said already."'
  sentences:
  - bitcoin price in china
  - can i use tax act to file a spouse's tax
  - what to look at if house sells for an appraiser?
- source_sentence: 'It''s simple, really: Practice. Fiscal responsibility is not a
    trick you can learn look up on Google, or a service you can buy from your accountant.  Being
    responsible with your money is a skill that is learned over a lifetime.  The only
    way to get better at it is to practice, and not get discouraged when you make
    mistakes.'
  sentences:
  - how long does it take for a loan to get paid interest
  - whatsapp to use with a foreigner
  - why do people have to be fiscally responsible
model-index:
- name: mpnet-base-financial-rag-matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.1809635722679201
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.4935370152761457
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5734430082256169
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.663924794359577
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.1809635722679201
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1645123384253819
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11468860164512337
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06639247943595769
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1809635722679201
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4935370152761457
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5734430082256169
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.663924794359577
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.41746626575107176
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.33849252979687783
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3464380043472146
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.19036427732079905
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.4900117508813161
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5687426556991775
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6533490011750881
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.19036427732079905
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.16333725029377202
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11374853113983546
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06533490011750881
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.19036427732079905
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4900117508813161
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5687426556991775
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6533490011750881
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4174472433498665
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3417030384421691
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.35038294448729146
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.1797884841363102
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.47473560517038776
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.54524089306698
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6439482961222092
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.1797884841363102
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.15824520172346257
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.10904817861339598
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06439482961222091
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1797884841363102
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.47473560517038776
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.54524089306698
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6439482961222092
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4067526935952037
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3308208829947965
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.33951940009649473
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.18566392479435959
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.4535840188014101
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5240893066980024
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6216216216216216
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.18566392479435959
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.15119467293380337
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.10481786133960047
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06216216216216215
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.18566392479435959
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4535840188014101
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5240893066980024
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6216216216216216
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.39600584846785714
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.324298211254733
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.33327512340163784
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.16333725029377202
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.42420681551116335
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.491186839012926
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5781433607520564
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.16333725029377202
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.14140227183705445
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.09823736780258518
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05781433607520563
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.16333725029377202
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.42420681551116335
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.491186839012926
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5781433607520564
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.36616361619562976
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.2984467386641303
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3078022299669783
      name: Cosine Map@100
---

# mpnet-base-financial-rag-matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("rbhatia46/mpnet-base-financial-rag-matryoshka")
# Run inference
sentences = [
    "It's simple, really: Practice. Fiscal responsibility is not a trick you can learn look up on Google, or a service you can buy from your accountant.  Being responsible with your money is a skill that is learned over a lifetime.  The only way to get better at it is to practice, and not get discouraged when you make mistakes.",
    'why do people have to be fiscally responsible',
    'how long does it take for a loan to get paid interest',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.181      |
| cosine_accuracy@3   | 0.4935     |
| cosine_accuracy@5   | 0.5734     |
| cosine_accuracy@10  | 0.6639     |
| cosine_precision@1  | 0.181      |
| cosine_precision@3  | 0.1645     |
| cosine_precision@5  | 0.1147     |
| cosine_precision@10 | 0.0664     |
| cosine_recall@1     | 0.181      |
| cosine_recall@3     | 0.4935     |
| cosine_recall@5     | 0.5734     |
| cosine_recall@10    | 0.6639     |
| cosine_ndcg@10      | 0.4175     |
| cosine_mrr@10       | 0.3385     |
| **cosine_map@100**  | **0.3464** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1904     |
| cosine_accuracy@3   | 0.49       |
| cosine_accuracy@5   | 0.5687     |
| cosine_accuracy@10  | 0.6533     |
| cosine_precision@1  | 0.1904     |
| cosine_precision@3  | 0.1633     |
| cosine_precision@5  | 0.1137     |
| cosine_precision@10 | 0.0653     |
| cosine_recall@1     | 0.1904     |
| cosine_recall@3     | 0.49       |
| cosine_recall@5     | 0.5687     |
| cosine_recall@10    | 0.6533     |
| cosine_ndcg@10      | 0.4174     |
| cosine_mrr@10       | 0.3417     |
| **cosine_map@100**  | **0.3504** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1798     |
| cosine_accuracy@3   | 0.4747     |
| cosine_accuracy@5   | 0.5452     |
| cosine_accuracy@10  | 0.6439     |
| cosine_precision@1  | 0.1798     |
| cosine_precision@3  | 0.1582     |
| cosine_precision@5  | 0.109      |
| cosine_precision@10 | 0.0644     |
| cosine_recall@1     | 0.1798     |
| cosine_recall@3     | 0.4747     |
| cosine_recall@5     | 0.5452     |
| cosine_recall@10    | 0.6439     |
| cosine_ndcg@10      | 0.4068     |
| cosine_mrr@10       | 0.3308     |
| **cosine_map@100**  | **0.3395** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1857     |
| cosine_accuracy@3   | 0.4536     |
| cosine_accuracy@5   | 0.5241     |
| cosine_accuracy@10  | 0.6216     |
| cosine_precision@1  | 0.1857     |
| cosine_precision@3  | 0.1512     |
| cosine_precision@5  | 0.1048     |
| cosine_precision@10 | 0.0622     |
| cosine_recall@1     | 0.1857     |
| cosine_recall@3     | 0.4536     |
| cosine_recall@5     | 0.5241     |
| cosine_recall@10    | 0.6216     |
| cosine_ndcg@10      | 0.396      |
| cosine_mrr@10       | 0.3243     |
| **cosine_map@100**  | **0.3333** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1633     |
| cosine_accuracy@3   | 0.4242     |
| cosine_accuracy@5   | 0.4912     |
| cosine_accuracy@10  | 0.5781     |
| cosine_precision@1  | 0.1633     |
| cosine_precision@3  | 0.1414     |
| cosine_precision@5  | 0.0982     |
| cosine_precision@10 | 0.0578     |
| cosine_recall@1     | 0.1633     |
| cosine_recall@3     | 0.4242     |
| cosine_recall@5     | 0.4912     |
| cosine_recall@10    | 0.5781     |
| cosine_ndcg@10      | 0.3662     |
| cosine_mrr@10       | 0.2984     |
| **cosine_map@100**  | **0.3078** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 169,213 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                            |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 158.03 tokens</li><li>max: 384 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.16 tokens</li><li>max: 30 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | anchor                                                       |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------|
  | <code>International Trade, the exchange of goods and services between nations. “Goods” can be defined as finished products, as intermediate goods used in producing other goods, or as raw materials such as minerals, agricultural products, and other such commodities. International trade commerce enables a nation to specialize in those goods it can produce most cheaply and efficiently, and sell those that are surplus to its requirements. Trade also enables a country to consume more than it would be able to produce if it depended only on its own resources. Finally, trade encourages economic development by increasing the size of the market to which products can be sold. Trade has always been the major force behind the economic relations among nations; it is a measure of national strength.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <code>what does international trade</code>                   |
  | <code>My wife and I meet in the first few days of each month to create a budget for the coming month. During that meeting we reconcile any spending for the previous month and make sure the amount money in our accounts matches the amount of money in our budget record to the penny. (We use an excel spreadsheet, how you track it matters less than the need to track it and see how much you spent in each category during the previous month.)  After we have have reviewed the previous month's spending, we allocate money we made during that previous month to each of the categories. What categories you track and how granular you are is less important than regularly seeing how much you spend so that you can evaluate whether your spending is really matching your priorities. We keep a running total for each category so if we go over on groceries one month, then the following month we have to add more to bring the category back to black as well as enough for our anticipated needs in the coming month. If there is one category that we are consistently underestimating (or overestimating) we talk about why. If there are large purchases that we are planning in the coming month, or even in a few months, we talk about them, why we want them, and we talk about how much we're planning to spend. If we want a new TV or to go on a trip, we may start adding money to the category with no plans to spend in the coming month. The biggest benefit to this process has been that we don't make a lot of impulse purchases, or if we do, they are for small dollar amounts. The simple need to explain what I want and why means I have to put the thought into it myself, and I talk myself out of a lot of purchases during that train of thought. The time spent regularly evaluating what we get for our money has cut waste that wasn't really bringing much happiness. We still buy what we want, but we agree that we want it first.</code> | <code>how to make a budget</code>                            |
  | <code>I just finished my bachelor and I'm doing my masters in Computer Science at a french school in Quebec. I consider myself being in the top 5% and I have an excellent curriculum, having studied abroad, learned 4 languages, participated in student committees, etc.  I'm leaning towards IT or business strategy/development...but I'm not sure yet. I guess I'm not that prepared, that's why I wanted a little help.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <code>what school do you want to attend for a masters</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch      | Step     | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:--------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.0303     | 10       | 2.2113        | -                      | -                      | -                      | -                     | -                      |
| 0.0605     | 20       | 2.1051        | -                      | -                      | -                      | -                     | -                      |
| 0.0908     | 30       | 1.9214        | -                      | -                      | -                      | -                     | -                      |
| 0.1210     | 40       | 1.744         | -                      | -                      | -                      | -                     | -                      |
| 0.1513     | 50       | 1.5873        | -                      | -                      | -                      | -                     | -                      |
| 0.1815     | 60       | 1.3988        | -                      | -                      | -                      | -                     | -                      |
| 0.2118     | 70       | 1.263         | -                      | -                      | -                      | -                     | -                      |
| 0.2421     | 80       | 1.1082        | -                      | -                      | -                      | -                     | -                      |
| 0.2723     | 90       | 1.0061        | -                      | -                      | -                      | -                     | -                      |
| 0.3026     | 100      | 1.0127        | -                      | -                      | -                      | -                     | -                      |
| 0.3328     | 110      | 0.8644        | -                      | -                      | -                      | -                     | -                      |
| 0.3631     | 120      | 0.8006        | -                      | -                      | -                      | -                     | -                      |
| 0.3933     | 130      | 0.8067        | -                      | -                      | -                      | -                     | -                      |
| 0.4236     | 140      | 0.7624        | -                      | -                      | -                      | -                     | -                      |
| 0.4539     | 150      | 0.799         | -                      | -                      | -                      | -                     | -                      |
| 0.4841     | 160      | 0.7025        | -                      | -                      | -                      | -                     | -                      |
| 0.5144     | 170      | 0.7467        | -                      | -                      | -                      | -                     | -                      |
| 0.5446     | 180      | 0.7509        | -                      | -                      | -                      | -                     | -                      |
| 0.5749     | 190      | 0.7057        | -                      | -                      | -                      | -                     | -                      |
| 0.6051     | 200      | 0.6929        | -                      | -                      | -                      | -                     | -                      |
| 0.6354     | 210      | 0.6948        | -                      | -                      | -                      | -                     | -                      |
| 0.6657     | 220      | 0.6477        | -                      | -                      | -                      | -                     | -                      |
| 0.6959     | 230      | 0.6562        | -                      | -                      | -                      | -                     | -                      |
| 0.7262     | 240      | 0.6278        | -                      | -                      | -                      | -                     | -                      |
| 0.7564     | 250      | 0.6249        | -                      | -                      | -                      | -                     | -                      |
| 0.7867     | 260      | 0.6057        | -                      | -                      | -                      | -                     | -                      |
| 0.8169     | 270      | 0.6258        | -                      | -                      | -                      | -                     | -                      |
| 0.8472     | 280      | 0.5007        | -                      | -                      | -                      | -                     | -                      |
| 0.8775     | 290      | 0.5998        | -                      | -                      | -                      | -                     | -                      |
| 0.9077     | 300      | 0.5958        | -                      | -                      | -                      | -                     | -                      |
| 0.9380     | 310      | 0.5568        | -                      | -                      | -                      | -                     | -                      |
| 0.9682     | 320      | 0.5236        | -                      | -                      | -                      | -                     | -                      |
| 0.9985     | 330      | 0.6239        | 0.3189                 | 0.3389                 | 0.3645                 | 0.3046                | 0.3700                 |
| 1.0287     | 340      | 0.5106        | -                      | -                      | -                      | -                     | -                      |
| 1.0590     | 350      | 0.6022        | -                      | -                      | -                      | -                     | -                      |
| 1.0893     | 360      | 0.5822        | -                      | -                      | -                      | -                     | -                      |
| 1.1195     | 370      | 0.5094        | -                      | -                      | -                      | -                     | -                      |
| 1.1498     | 380      | 0.5037        | -                      | -                      | -                      | -                     | -                      |
| 1.1800     | 390      | 0.5415        | -                      | -                      | -                      | -                     | -                      |
| 1.2103     | 400      | 0.5011        | -                      | -                      | -                      | -                     | -                      |
| 1.2405     | 410      | 0.4571        | -                      | -                      | -                      | -                     | -                      |
| 1.2708     | 420      | 0.4587        | -                      | -                      | -                      | -                     | -                      |
| 1.3011     | 430      | 0.5065        | -                      | -                      | -                      | -                     | -                      |
| 1.3313     | 440      | 0.4589        | -                      | -                      | -                      | -                     | -                      |
| 1.3616     | 450      | 0.4165        | -                      | -                      | -                      | -                     | -                      |
| 1.3918     | 460      | 0.4215        | -                      | -                      | -                      | -                     | -                      |
| 1.4221     | 470      | 0.4302        | -                      | -                      | -                      | -                     | -                      |
| 1.4523     | 480      | 0.4556        | -                      | -                      | -                      | -                     | -                      |
| 1.4826     | 490      | 0.3793        | -                      | -                      | -                      | -                     | -                      |
| 1.5129     | 500      | 0.4586        | -                      | -                      | -                      | -                     | -                      |
| 1.5431     | 510      | 0.4327        | -                      | -                      | -                      | -                     | -                      |
| 1.5734     | 520      | 0.4207        | -                      | -                      | -                      | -                     | -                      |
| 1.6036     | 530      | 0.4042        | -                      | -                      | -                      | -                     | -                      |
| 1.6339     | 540      | 0.4019        | -                      | -                      | -                      | -                     | -                      |
| 1.6641     | 550      | 0.3804        | -                      | -                      | -                      | -                     | -                      |
| 1.6944     | 560      | 0.3796        | -                      | -                      | -                      | -                     | -                      |
| 1.7247     | 570      | 0.3476        | -                      | -                      | -                      | -                     | -                      |
| 1.7549     | 580      | 0.3871        | -                      | -                      | -                      | -                     | -                      |
| 1.7852     | 590      | 0.3602        | -                      | -                      | -                      | -                     | -                      |
| 1.8154     | 600      | 0.3711        | -                      | -                      | -                      | -                     | -                      |
| 1.8457     | 610      | 0.2879        | -                      | -                      | -                      | -                     | -                      |
| 1.8759     | 620      | 0.3497        | -                      | -                      | -                      | -                     | -                      |
| 1.9062     | 630      | 0.3346        | -                      | -                      | -                      | -                     | -                      |
| 1.9365     | 640      | 0.3426        | -                      | -                      | -                      | -                     | -                      |
| 1.9667     | 650      | 0.2977        | -                      | -                      | -                      | -                     | -                      |
| 1.9970     | 660      | 0.3783        | -                      | -                      | -                      | -                     | -                      |
| 2.0        | 661      | -             | 0.3282                 | 0.3485                 | 0.3749                 | 0.2960                | 0.3666                 |
| 2.0272     | 670      | 0.3012        | -                      | -                      | -                      | -                     | -                      |
| 2.0575     | 680      | 0.3491        | -                      | -                      | -                      | -                     | -                      |
| 2.0877     | 690      | 0.3589        | -                      | -                      | -                      | -                     | -                      |
| 2.1180     | 700      | 0.2998        | -                      | -                      | -                      | -                     | -                      |
| 2.1483     | 710      | 0.2925        | -                      | -                      | -                      | -                     | -                      |
| 2.1785     | 720      | 0.3261        | -                      | -                      | -                      | -                     | -                      |
| 2.2088     | 730      | 0.2917        | -                      | -                      | -                      | -                     | -                      |
| 2.2390     | 740      | 0.2685        | -                      | -                      | -                      | -                     | -                      |
| 2.2693     | 750      | 0.2674        | -                      | -                      | -                      | -                     | -                      |
| 2.2995     | 760      | 0.3136        | -                      | -                      | -                      | -                     | -                      |
| 2.3298     | 770      | 0.2631        | -                      | -                      | -                      | -                     | -                      |
| 2.3601     | 780      | 0.2509        | -                      | -                      | -                      | -                     | -                      |
| 2.3903     | 790      | 0.2518        | -                      | -                      | -                      | -                     | -                      |
| 2.4206     | 800      | 0.2603        | -                      | -                      | -                      | -                     | -                      |
| 2.4508     | 810      | 0.2773        | -                      | -                      | -                      | -                     | -                      |
| 2.4811     | 820      | 0.245         | -                      | -                      | -                      | -                     | -                      |
| 2.5113     | 830      | 0.2746        | -                      | -                      | -                      | -                     | -                      |
| 2.5416     | 840      | 0.2747        | -                      | -                      | -                      | -                     | -                      |
| 2.5719     | 850      | 0.2426        | -                      | -                      | -                      | -                     | -                      |
| 2.6021     | 860      | 0.2593        | -                      | -                      | -                      | -                     | -                      |
| 2.6324     | 870      | 0.2482        | -                      | -                      | -                      | -                     | -                      |
| 2.6626     | 880      | 0.2344        | -                      | -                      | -                      | -                     | -                      |
| 2.6929     | 890      | 0.2452        | -                      | -                      | -                      | -                     | -                      |
| 2.7231     | 900      | 0.218         | -                      | -                      | -                      | -                     | -                      |
| 2.7534     | 910      | 0.2319        | -                      | -                      | -                      | -                     | -                      |
| 2.7837     | 920      | 0.2366        | -                      | -                      | -                      | -                     | -                      |
| 2.8139     | 930      | 0.2265        | -                      | -                      | -                      | -                     | -                      |
| 2.8442     | 940      | 0.1753        | -                      | -                      | -                      | -                     | -                      |
| 2.8744     | 950      | 0.2153        | -                      | -                      | -                      | -                     | -                      |
| 2.9047     | 960      | 0.201         | -                      | -                      | -                      | -                     | -                      |
| 2.9349     | 970      | 0.2205        | -                      | -                      | -                      | -                     | -                      |
| 2.9652     | 980      | 0.1933        | -                      | -                      | -                      | -                     | -                      |
| 2.9955     | 990      | 0.2301        | -                      | -                      | -                      | -                     | -                      |
| 2.9985     | 991      | -             | 0.3285                 | 0.3484                 | 0.3636                 | 0.2966                | 0.3660                 |
| 3.0257     | 1000     | 0.1946        | -                      | -                      | -                      | -                     | -                      |
| 3.0560     | 1010     | 0.203         | -                      | -                      | -                      | -                     | -                      |
| 3.0862     | 1020     | 0.2385        | -                      | -                      | -                      | -                     | -                      |
| 3.1165     | 1030     | 0.1821        | -                      | -                      | -                      | -                     | -                      |
| 3.1467     | 1040     | 0.1858        | -                      | -                      | -                      | -                     | -                      |
| 3.1770     | 1050     | 0.2057        | -                      | -                      | -                      | -                     | -                      |
| 3.2073     | 1060     | 0.18          | -                      | -                      | -                      | -                     | -                      |
| 3.2375     | 1070     | 0.1751        | -                      | -                      | -                      | -                     | -                      |
| 3.2678     | 1080     | 0.1539        | -                      | -                      | -                      | -                     | -                      |
| 3.2980     | 1090     | 0.2153        | -                      | -                      | -                      | -                     | -                      |
| 3.3283     | 1100     | 0.1739        | -                      | -                      | -                      | -                     | -                      |
| 3.3585     | 1110     | 0.1621        | -                      | -                      | -                      | -                     | -                      |
| 3.3888     | 1120     | 0.1541        | -                      | -                      | -                      | -                     | -                      |
| 3.4191     | 1130     | 0.1642        | -                      | -                      | -                      | -                     | -                      |
| 3.4493     | 1140     | 0.1893        | -                      | -                      | -                      | -                     | -                      |
| 3.4796     | 1150     | 0.16          | -                      | -                      | -                      | -                     | -                      |
| 3.5098     | 1160     | 0.1839        | -                      | -                      | -                      | -                     | -                      |
| 3.5401     | 1170     | 0.1748        | -                      | -                      | -                      | -                     | -                      |
| 3.5703     | 1180     | 0.1499        | -                      | -                      | -                      | -                     | -                      |
| 3.6006     | 1190     | 0.1706        | -                      | -                      | -                      | -                     | -                      |
| 3.6309     | 1200     | 0.1541        | -                      | -                      | -                      | -                     | -                      |
| 3.6611     | 1210     | 0.1592        | -                      | -                      | -                      | -                     | -                      |
| 3.6914     | 1220     | 0.1683        | -                      | -                      | -                      | -                     | -                      |
| 3.7216     | 1230     | 0.1408        | -                      | -                      | -                      | -                     | -                      |
| 3.7519     | 1240     | 0.1595        | -                      | -                      | -                      | -                     | -                      |
| 3.7821     | 1250     | 0.1585        | -                      | -                      | -                      | -                     | -                      |
| 3.8124     | 1260     | 0.1521        | -                      | -                      | -                      | -                     | -                      |
| 3.8427     | 1270     | 0.1167        | -                      | -                      | -                      | -                     | -                      |
| 3.8729     | 1280     | 0.1416        | -                      | -                      | -                      | -                     | -                      |
| 3.9032     | 1290     | 0.1386        | -                      | -                      | -                      | -                     | -                      |
| 3.9334     | 1300     | 0.1513        | -                      | -                      | -                      | -                     | -                      |
| 3.9637     | 1310     | 0.1329        | -                      | -                      | -                      | -                     | -                      |
| 3.9939     | 1320     | 0.1565        | -                      | -                      | -                      | -                     | -                      |
| 4.0        | 1322     | -             | 0.3270                 | 0.3575                 | 0.3636                 | 0.3053                | 0.3660                 |
| 4.0242     | 1330     | 0.1253        | -                      | -                      | -                      | -                     | -                      |
| 4.0545     | 1340     | 0.1325        | -                      | -                      | -                      | -                     | -                      |
| 4.0847     | 1350     | 0.1675        | -                      | -                      | -                      | -                     | -                      |
| 4.1150     | 1360     | 0.1291        | -                      | -                      | -                      | -                     | -                      |
| 4.1452     | 1370     | 0.1259        | -                      | -                      | -                      | -                     | -                      |
| 4.1755     | 1380     | 0.1359        | -                      | -                      | -                      | -                     | -                      |
| 4.2057     | 1390     | 0.1344        | -                      | -                      | -                      | -                     | -                      |
| 4.2360     | 1400     | 0.1187        | -                      | -                      | -                      | -                     | -                      |
| 4.2663     | 1410     | 0.1062        | -                      | -                      | -                      | -                     | -                      |
| 4.2965     | 1420     | 0.1653        | -                      | -                      | -                      | -                     | -                      |
| 4.3268     | 1430     | 0.1164        | -                      | -                      | -                      | -                     | -                      |
| 4.3570     | 1440     | 0.103         | -                      | -                      | -                      | -                     | -                      |
| 4.3873     | 1450     | 0.1093        | -                      | -                      | -                      | -                     | -                      |
| 4.4175     | 1460     | 0.1156        | -                      | -                      | -                      | -                     | -                      |
| 4.4478     | 1470     | 0.1195        | -                      | -                      | -                      | -                     | -                      |
| 4.4781     | 1480     | 0.1141        | -                      | -                      | -                      | -                     | -                      |
| 4.5083     | 1490     | 0.1233        | -                      | -                      | -                      | -                     | -                      |
| 4.5386     | 1500     | 0.1169        | -                      | -                      | -                      | -                     | -                      |
| 4.5688     | 1510     | 0.0957        | -                      | -                      | -                      | -                     | -                      |
| 4.5991     | 1520     | 0.1147        | -                      | -                      | -                      | -                     | -                      |
| 4.6293     | 1530     | 0.1134        | -                      | -                      | -                      | -                     | -                      |
| 4.6596     | 1540     | 0.1143        | -                      | -                      | -                      | -                     | -                      |
| 4.6899     | 1550     | 0.1125        | -                      | -                      | -                      | -                     | -                      |
| 4.7201     | 1560     | 0.0988        | -                      | -                      | -                      | -                     | -                      |
| 4.7504     | 1570     | 0.1149        | -                      | -                      | -                      | -                     | -                      |
| 4.7806     | 1580     | 0.1154        | -                      | -                      | -                      | -                     | -                      |
| 4.8109     | 1590     | 0.1043        | -                      | -                      | -                      | -                     | -                      |
| 4.8411     | 1600     | 0.0887        | -                      | -                      | -                      | -                     | -                      |
| 4.8714     | 1610     | 0.0921        | -                      | -                      | -                      | -                     | -                      |
| 4.9017     | 1620     | 0.1023        | -                      | -                      | -                      | -                     | -                      |
| 4.9319     | 1630     | 0.1078        | -                      | -                      | -                      | -                     | -                      |
| 4.9622     | 1640     | 0.1053        | -                      | -                      | -                      | -                     | -                      |
| 4.9924     | 1650     | 0.1135        | -                      | -                      | -                      | -                     | -                      |
| 4.9985     | 1652     | -             | 0.3402                 | 0.3620                 | 0.3781                 | 0.3236                | 0.3842                 |
| 5.0227     | 1660     | 0.0908        | -                      | -                      | -                      | -                     | -                      |
| 5.0530     | 1670     | 0.0908        | -                      | -                      | -                      | -                     | -                      |
| 5.0832     | 1680     | 0.1149        | -                      | -                      | -                      | -                     | -                      |
| 5.1135     | 1690     | 0.0991        | -                      | -                      | -                      | -                     | -                      |
| 5.1437     | 1700     | 0.0864        | -                      | -                      | -                      | -                     | -                      |
| 5.1740     | 1710     | 0.0987        | -                      | -                      | -                      | -                     | -                      |
| 5.2042     | 1720     | 0.0949        | -                      | -                      | -                      | -                     | -                      |
| 5.2345     | 1730     | 0.0893        | -                      | -                      | -                      | -                     | -                      |
| 5.2648     | 1740     | 0.0806        | -                      | -                      | -                      | -                     | -                      |
| 5.2950     | 1750     | 0.1187        | -                      | -                      | -                      | -                     | -                      |
| 5.3253     | 1760     | 0.0851        | -                      | -                      | -                      | -                     | -                      |
| 5.3555     | 1770     | 0.0814        | -                      | -                      | -                      | -                     | -                      |
| 5.3858     | 1780     | 0.0803        | -                      | -                      | -                      | -                     | -                      |
| 5.4160     | 1790     | 0.0816        | -                      | -                      | -                      | -                     | -                      |
| 5.4463     | 1800     | 0.0916        | -                      | -                      | -                      | -                     | -                      |
| 5.4766     | 1810     | 0.0892        | -                      | -                      | -                      | -                     | -                      |
| 5.5068     | 1820     | 0.0935        | -                      | -                      | -                      | -                     | -                      |
| 5.5371     | 1830     | 0.0963        | -                      | -                      | -                      | -                     | -                      |
| 5.5673     | 1840     | 0.0759        | -                      | -                      | -                      | -                     | -                      |
| 5.5976     | 1850     | 0.0908        | -                      | -                      | -                      | -                     | -                      |
| 5.6278     | 1860     | 0.0896        | -                      | -                      | -                      | -                     | -                      |
| 5.6581     | 1870     | 0.0855        | -                      | -                      | -                      | -                     | -                      |
| 5.6884     | 1880     | 0.0849        | -                      | -                      | -                      | -                     | -                      |
| 5.7186     | 1890     | 0.0805        | -                      | -                      | -                      | -                     | -                      |
| 5.7489     | 1900     | 0.0872        | -                      | -                      | -                      | -                     | -                      |
| 5.7791     | 1910     | 0.0853        | -                      | -                      | -                      | -                     | -                      |
| 5.8094     | 1920     | 0.0856        | -                      | -                      | -                      | -                     | -                      |
| 5.8396     | 1930     | 0.064         | -                      | -                      | -                      | -                     | -                      |
| 5.8699     | 1940     | 0.0748        | -                      | -                      | -                      | -                     | -                      |
| 5.9002     | 1950     | 0.0769        | -                      | -                      | -                      | -                     | -                      |
| 5.9304     | 1960     | 0.0868        | -                      | -                      | -                      | -                     | -                      |
| 5.9607     | 1970     | 0.0842        | -                      | -                      | -                      | -                     | -                      |
| 5.9909     | 1980     | 0.0825        | -                      | -                      | -                      | -                     | -                      |
| 6.0        | 1983     | -             | 0.3412                 | 0.3542                 | 0.3615                 | 0.3171                | 0.3676                 |
| 6.0212     | 1990     | 0.073         | -                      | -                      | -                      | -                     | -                      |
| 6.0514     | 2000     | 0.0708        | -                      | -                      | -                      | -                     | -                      |
| 6.0817     | 2010     | 0.0908        | -                      | -                      | -                      | -                     | -                      |
| 6.1120     | 2020     | 0.0807        | -                      | -                      | -                      | -                     | -                      |
| 6.1422     | 2030     | 0.0665        | -                      | -                      | -                      | -                     | -                      |
| 6.1725     | 2040     | 0.0773        | -                      | -                      | -                      | -                     | -                      |
| 6.2027     | 2050     | 0.0798        | -                      | -                      | -                      | -                     | -                      |
| 6.2330     | 2060     | 0.0743        | -                      | -                      | -                      | -                     | -                      |
| 6.2632     | 2070     | 0.0619        | -                      | -                      | -                      | -                     | -                      |
| 6.2935     | 2080     | 0.0954        | -                      | -                      | -                      | -                     | -                      |
| 6.3238     | 2090     | 0.0682        | -                      | -                      | -                      | -                     | -                      |
| 6.3540     | 2100     | 0.0594        | -                      | -                      | -                      | -                     | -                      |
| 6.3843     | 2110     | 0.0621        | -                      | -                      | -                      | -                     | -                      |
| 6.4145     | 2120     | 0.0674        | -                      | -                      | -                      | -                     | -                      |
| 6.4448     | 2130     | 0.069         | -                      | -                      | -                      | -                     | -                      |
| 6.4750     | 2140     | 0.0741        | -                      | -                      | -                      | -                     | -                      |
| 6.5053     | 2150     | 0.0757        | -                      | -                      | -                      | -                     | -                      |
| 6.5356     | 2160     | 0.0781        | -                      | -                      | -                      | -                     | -                      |
| 6.5658     | 2170     | 0.0632        | -                      | -                      | -                      | -                     | -                      |
| 6.5961     | 2180     | 0.07          | -                      | -                      | -                      | -                     | -                      |
| 6.6263     | 2190     | 0.0767        | -                      | -                      | -                      | -                     | -                      |
| 6.6566     | 2200     | 0.0674        | -                      | -                      | -                      | -                     | -                      |
| 6.6868     | 2210     | 0.0704        | -                      | -                      | -                      | -                     | -                      |
| 6.7171     | 2220     | 0.065         | -                      | -                      | -                      | -                     | -                      |
| 6.7474     | 2230     | 0.066         | -                      | -                      | -                      | -                     | -                      |
| 6.7776     | 2240     | 0.0752        | -                      | -                      | -                      | -                     | -                      |
| 6.8079     | 2250     | 0.07          | -                      | -                      | -                      | -                     | -                      |
| 6.8381     | 2260     | 0.0602        | -                      | -                      | -                      | -                     | -                      |
| 6.8684     | 2270     | 0.0595        | -                      | -                      | -                      | -                     | -                      |
| 6.8986     | 2280     | 0.065         | -                      | -                      | -                      | -                     | -                      |
| 6.9289     | 2290     | 0.0677        | -                      | -                      | -                      | -                     | -                      |
| 6.9592     | 2300     | 0.0708        | -                      | -                      | -                      | -                     | -                      |
| 6.9894     | 2310     | 0.0651        | -                      | -                      | -                      | -                     | -                      |
| **6.9985** | **2313** | **-**         | **0.3484**             | **0.3671**             | **0.3645**             | **0.3214**            | **0.3773**             |
| 7.0197     | 2320     | 0.0657        | -                      | -                      | -                      | -                     | -                      |
| 7.0499     | 2330     | 0.0588        | -                      | -                      | -                      | -                     | -                      |
| 7.0802     | 2340     | 0.0701        | -                      | -                      | -                      | -                     | -                      |
| 7.1104     | 2350     | 0.0689        | -                      | -                      | -                      | -                     | -                      |
| 7.1407     | 2360     | 0.0586        | -                      | -                      | -                      | -                     | -                      |
| 7.1710     | 2370     | 0.0626        | -                      | -                      | -                      | -                     | -                      |
| 7.2012     | 2380     | 0.0723        | -                      | -                      | -                      | -                     | -                      |
| 7.2315     | 2390     | 0.0602        | -                      | -                      | -                      | -                     | -                      |
| 7.2617     | 2400     | 0.0541        | -                      | -                      | -                      | -                     | -                      |
| 7.2920     | 2410     | 0.0823        | -                      | -                      | -                      | -                     | -                      |
| 7.3222     | 2420     | 0.0592        | -                      | -                      | -                      | -                     | -                      |
| 7.3525     | 2430     | 0.0535        | -                      | -                      | -                      | -                     | -                      |
| 7.3828     | 2440     | 0.0548        | -                      | -                      | -                      | -                     | -                      |
| 7.4130     | 2450     | 0.0598        | -                      | -                      | -                      | -                     | -                      |
| 7.4433     | 2460     | 0.0554        | -                      | -                      | -                      | -                     | -                      |
| 7.4735     | 2470     | 0.0663        | -                      | -                      | -                      | -                     | -                      |
| 7.5038     | 2480     | 0.0645        | -                      | -                      | -                      | -                     | -                      |
| 7.5340     | 2490     | 0.0638        | -                      | -                      | -                      | -                     | -                      |
| 7.5643     | 2500     | 0.0574        | -                      | -                      | -                      | -                     | -                      |
| 7.5946     | 2510     | 0.0608        | -                      | -                      | -                      | -                     | -                      |
| 7.6248     | 2520     | 0.0633        | -                      | -                      | -                      | -                     | -                      |
| 7.6551     | 2530     | 0.0576        | -                      | -                      | -                      | -                     | -                      |
| 7.6853     | 2540     | 0.0613        | -                      | -                      | -                      | -                     | -                      |
| 7.7156     | 2550     | 0.054         | -                      | -                      | -                      | -                     | -                      |
| 7.7458     | 2560     | 0.0591        | -                      | -                      | -                      | -                     | -                      |
| 7.7761     | 2570     | 0.0659        | -                      | -                      | -                      | -                     | -                      |
| 7.8064     | 2580     | 0.0601        | -                      | -                      | -                      | -                     | -                      |
| 7.8366     | 2590     | 0.053         | -                      | -                      | -                      | -                     | -                      |
| 7.8669     | 2600     | 0.0536        | -                      | -                      | -                      | -                     | -                      |
| 7.8971     | 2610     | 0.0581        | -                      | -                      | -                      | -                     | -                      |
| 7.9274     | 2620     | 0.0603        | -                      | -                      | -                      | -                     | -                      |
| 7.9576     | 2630     | 0.0661        | -                      | -                      | -                      | -                     | -                      |
| 7.9879     | 2640     | 0.0588        | -                      | -                      | -                      | -                     | -                      |
| 8.0        | 2644     | -             | 0.3340                 | 0.3533                 | 0.3541                 | 0.3163                | 0.3651                 |
| 8.0182     | 2650     | 0.0559        | -                      | -                      | -                      | -                     | -                      |
| 8.0484     | 2660     | 0.0566        | -                      | -                      | -                      | -                     | -                      |
| 8.0787     | 2670     | 0.0666        | -                      | -                      | -                      | -                     | -                      |
| 8.1089     | 2680     | 0.0601        | -                      | -                      | -                      | -                     | -                      |
| 8.1392     | 2690     | 0.0522        | -                      | -                      | -                      | -                     | -                      |
| 8.1694     | 2700     | 0.0527        | -                      | -                      | -                      | -                     | -                      |
| 8.1997     | 2710     | 0.0622        | -                      | -                      | -                      | -                     | -                      |
| 8.2300     | 2720     | 0.0577        | -                      | -                      | -                      | -                     | -                      |
| 8.2602     | 2730     | 0.0467        | -                      | -                      | -                      | -                     | -                      |
| 8.2905     | 2740     | 0.0762        | -                      | -                      | -                      | -                     | -                      |
| 8.3207     | 2750     | 0.0562        | -                      | -                      | -                      | -                     | -                      |
| 8.3510     | 2760     | 0.0475        | -                      | -                      | -                      | -                     | -                      |
| 8.3812     | 2770     | 0.0482        | -                      | -                      | -                      | -                     | -                      |
| 8.4115     | 2780     | 0.0536        | -                      | -                      | -                      | -                     | -                      |
| 8.4418     | 2790     | 0.0534        | -                      | -                      | -                      | -                     | -                      |
| 8.4720     | 2800     | 0.0588        | -                      | -                      | -                      | -                     | -                      |
| 8.5023     | 2810     | 0.0597        | -                      | -                      | -                      | -                     | -                      |
| 8.5325     | 2820     | 0.0587        | -                      | -                      | -                      | -                     | -                      |
| 8.5628     | 2830     | 0.0544        | -                      | -                      | -                      | -                     | -                      |
| 8.5930     | 2840     | 0.0577        | -                      | -                      | -                      | -                     | -                      |
| 8.6233     | 2850     | 0.0592        | -                      | -                      | -                      | -                     | -                      |
| 8.6536     | 2860     | 0.0554        | -                      | -                      | -                      | -                     | -                      |
| 8.6838     | 2870     | 0.0541        | -                      | -                      | -                      | -                     | -                      |
| 8.7141     | 2880     | 0.0495        | -                      | -                      | -                      | -                     | -                      |
| 8.7443     | 2890     | 0.0547        | -                      | -                      | -                      | -                     | -                      |
| 8.7746     | 2900     | 0.0646        | -                      | -                      | -                      | -                     | -                      |
| 8.8048     | 2910     | 0.0574        | -                      | -                      | -                      | -                     | -                      |
| 8.8351     | 2920     | 0.0486        | -                      | -                      | -                      | -                     | -                      |
| 8.8654     | 2930     | 0.0517        | -                      | -                      | -                      | -                     | -                      |
| 8.8956     | 2940     | 0.0572        | -                      | -                      | -                      | -                     | -                      |
| 8.9259     | 2950     | 0.0518        | -                      | -                      | -                      | -                     | -                      |
| 8.9561     | 2960     | 0.0617        | -                      | -                      | -                      | -                     | -                      |
| 8.9864     | 2970     | 0.0572        | -                      | -                      | -                      | -                     | -                      |
| 8.9985     | 2974     | -             | 0.3434                 | 0.3552                 | 0.3694                 | 0.3253                | 0.3727                 |
| 9.0166     | 2980     | 0.0549        | -                      | -                      | -                      | -                     | -                      |
| 9.0469     | 2990     | 0.0471        | -                      | -                      | -                      | -                     | -                      |
| 9.0772     | 3000     | 0.0629        | -                      | -                      | -                      | -                     | -                      |
| 9.1074     | 3010     | 0.058         | -                      | -                      | -                      | -                     | -                      |
| 9.1377     | 3020     | 0.0531        | -                      | -                      | -                      | -                     | -                      |
| 9.1679     | 3030     | 0.051         | -                      | -                      | -                      | -                     | -                      |
| 9.1982     | 3040     | 0.0593        | -                      | -                      | -                      | -                     | -                      |
| 9.2284     | 3050     | 0.056         | -                      | -                      | -                      | -                     | -                      |
| 9.2587     | 3060     | 0.0452        | -                      | -                      | -                      | -                     | -                      |
| 9.2890     | 3070     | 0.0672        | -                      | -                      | -                      | -                     | -                      |
| 9.3192     | 3080     | 0.0547        | -                      | -                      | -                      | -                     | -                      |
| 9.3495     | 3090     | 0.0477        | -                      | -                      | -                      | -                     | -                      |
| 9.3797     | 3100     | 0.0453        | -                      | -                      | -                      | -                     | -                      |
| 9.4100     | 3110     | 0.0542        | -                      | -                      | -                      | -                     | -                      |
| 9.4402     | 3120     | 0.0538        | -                      | -                      | -                      | -                     | -                      |
| 9.4705     | 3130     | 0.0552        | -                      | -                      | -                      | -                     | -                      |
| 9.5008     | 3140     | 0.0586        | -                      | -                      | -                      | -                     | -                      |
| 9.5310     | 3150     | 0.0567        | -                      | -                      | -                      | -                     | -                      |
| 9.5613     | 3160     | 0.0499        | -                      | -                      | -                      | -                     | -                      |
| 9.5915     | 3170     | 0.0598        | -                      | -                      | -                      | -                     | -                      |
| 9.6218     | 3180     | 0.0546        | -                      | -                      | -                      | -                     | -                      |
| 9.6520     | 3190     | 0.0513        | -                      | -                      | -                      | -                     | -                      |
| 9.6823     | 3200     | 0.0549        | -                      | -                      | -                      | -                     | -                      |
| 9.7126     | 3210     | 0.0513        | -                      | -                      | -                      | -                     | -                      |
| 9.7428     | 3220     | 0.0536        | -                      | -                      | -                      | -                     | -                      |
| 9.7731     | 3230     | 0.0588        | -                      | -                      | -                      | -                     | -                      |
| 9.8033     | 3240     | 0.0531        | -                      | -                      | -                      | -                     | -                      |
| 9.8336     | 3250     | 0.0472        | -                      | -                      | -                      | -                     | -                      |
| 9.8638     | 3260     | 0.0486        | -                      | -                      | -                      | -                     | -                      |
| 9.8941     | 3270     | 0.0576        | -                      | -                      | -                      | -                     | -                      |
| 9.9244     | 3280     | 0.0526        | -                      | -                      | -                      | -                     | -                      |
| 9.9546     | 3290     | 0.0568        | -                      | -                      | -                      | -                     | -                      |
| 9.9849     | 3300     | 0.0617        | 0.3333                 | 0.3395                 | 0.3504                 | 0.3078                | 0.3464                 |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.10.8
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.33.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->