File size: 2,148 Bytes
5695218 c4df450 5695218 c4df450 5695218 c4df450 5695218 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- razhan/common_voice_ckb_16
metrics:
- wer
model-index:
- name: whisper-tiny-ckb
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: razhan/common_voice_ckb_16
type: razhan/common_voice_ckb_16
metrics:
- name: Wer
type: wer
value: 0.47801004237740824
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-ckb
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the razhan/common_voice_ckb_16 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2612
- Wer: 0.4780
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 192
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 768
- total_eval_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 600
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4502 | 0.72 | 100 | 0.4988 | 0.7166 |
| 0.2977 | 1.45 | 200 | 0.3557 | 0.5859 |
| 0.2494 | 2.17 | 300 | 0.3096 | 0.5315 |
| 0.2224 | 2.9 | 400 | 0.2817 | 0.5008 |
| 0.2148 | 3.62 | 500 | 0.2666 | 0.4819 |
| 0.2096 | 4.35 | 600 | 0.2612 | 0.4780 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.0
|