File size: 3,792 Bytes
770a7c6
 
 
 
 
71830ca
 
770a7c6
 
 
 
 
 
 
 
 
 
 
71830ca
7717abe
71830ca
 
 
 
7717abe
 
770a7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7717abe
 
770a7c6
 
 
7717abe
770a7c6
 
 
7717abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
770a7c6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-ckb
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-ckb

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6353
- Rouge1: 0.0
- Rouge2: 0.0
- Rougel: 0.0
- Rougelsum: 0.0
- Cer: 4.7349
- Gen Len: 13.2035

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 320
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step  | Cer     | Gen Len | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:-------:|:-------:|:---------------:|:------:|:------:|:------:|:---------:|
| 3.5765        | 0.11  | 500   | 10.3648 | 16.358  | 3.4338          | 0.0    | 0.0    | 0.0    | 0.0       |
| 3.1749        | 0.22  | 1000  | 10.955  | 15.828  | 3.0110          | 0.0    | 0.0    | 0.0    | 0.0       |
| 2.8696        | 0.33  | 1500  | 11.2579 | 15.358  | 2.6943          | 0.0    | 0.0    | 0.0    | 0.0       |
| 2.6279        | 0.43  | 2000  | 11.6734 | 14.8565 | 2.4300          | 0.0    | 0.0    | 0.0    | 0.0       |
| 2.4166        | 0.54  | 2500  | 11.028  | 14.523  | 2.2248          | 0.0    | 0.0    | 0.0    | 0.0       |
| 2.2444        | 0.65  | 3000  | 10.4379 | 14.4185 | 2.0490          | 0.0    | 0.0    | 0.0    | 0.0       |
| 2.0902        | 0.76  | 3500  | 10.0905 | 14.242  | 1.8756          | 0.0    | 0.0    | 0.0    | 0.0       |
| 1.9565        | 0.87  | 4000  | 9.7629  | 14.042  | 1.7377          | 0.0    | 0.0    | 0.0    | 0.0       |
| 1.8319        | 0.98  | 4500  | 9.4737  | 13.877  | 1.6244          | 0.0    | 0.0    | 0.0    | 0.0       |
| 1.7104        | 1.09  | 5000  | 9.153   | 13.825  | 1.5353          | 0.0    | 0.0    | 0.0    | 0.0       |
| 1.6148        | 1.2   | 5500  | 8.8125  | 13.726  | 1.4422          | 0.0    | 0.0    | 0.0    | 0.0       |
| 1.5459        | 1.3   | 6000  | 8.5589  | 13.681  | 1.3755          | 0.0    | 0.0    | 0.0    | 0.0       |
| 1.4837        | 1.41  | 6500  | 8.2717  | 13.6225 | 1.3035          | 0.0    | 0.0    | 0.0    | 0.0       |
| 1.4219        | 1.52  | 7000  | 8.0684  | 13.549  | 1.2407          | 0.0    | 0.0    | 0.0    | 0.0       |
| 1.3743        | 1.63  | 7500  | 7.7684  | 13.502  | 1.1865          | 0.0    | 0.0    | 0.0    | 0.0       |
| 1.3318        | 1.74  | 8000  | 7.5247  | 13.509  | 1.1503          | 0.0    | 0.0    | 0.0    | 0.0       |
| 1.2893        | 1.85  | 8500  | 7.3826  | 13.456  | 1.1085          | 0.0    | 0.0    | 0.0    | 0.0       |
| 1.2228        | 2.0   | 9198  | 1.0506  | 0.0     | 0.0             | 0.0    | 0.0    | 7.0411 | 13.3935   |
| 0.9343        | 3.0   | 13797 | 0.7769  | 0.0     | 0.0             | 0.0    | 0.0    | 5.5303 | 13.2935   |
| 0.7915        | 4.0   | 18396 | 0.6663  | 0.0     | 0.0             | 0.0    | 0.0    | 4.8928 | 13.209    |
| 0.7436        | 5.0   | 22995 | 0.6353  | 0.0     | 0.0             | 0.0    | 0.0    | 4.7349 | 13.2035   |


### Framework versions

- Transformers 4.34.0.dev0
- Pytorch 1.13.1
- Datasets 2.14.5
- Tokenizers 0.13.3