--- base_model: daveni/twitter-xlm-roberta-emotion-es tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: base results: [] --- # base This model is a fine-tuned version of [daveni/twitter-xlm-roberta-emotion-es](https://huggingface.co./daveni/twitter-xlm-roberta-emotion-es) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1501 - Accuracy: 0.8346 - F1: 0.7717 - Precision: 0.8987 - Recall: 0.6762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6694 | 1.0 | 32 | 0.6008 | 0.6969 | 0.4901 | 0.8043 | 0.3524 | | 0.5305 | 2.0 | 64 | 0.4786 | 0.7795 | 0.6854 | 0.8356 | 0.5810 | | 0.3457 | 3.0 | 96 | 0.4456 | 0.8031 | 0.7788 | 0.7273 | 0.8381 | | 0.2513 | 4.0 | 128 | 0.5167 | 0.8307 | 0.7725 | 0.8690 | 0.6952 | | 0.1725 | 5.0 | 160 | 0.6917 | 0.8189 | 0.7604 | 0.8391 | 0.6952 | | 0.0974 | 6.0 | 192 | 0.7955 | 0.8228 | 0.7619 | 0.8571 | 0.6857 | | 0.042 | 7.0 | 224 | 0.8829 | 0.8346 | 0.7766 | 0.8795 | 0.6952 | | 0.014 | 8.0 | 256 | 0.9991 | 0.8189 | 0.7653 | 0.8242 | 0.7143 | | 0.0103 | 9.0 | 288 | 1.1313 | 0.8346 | 0.7717 | 0.8987 | 0.6762 | | 0.0194 | 10.0 | 320 | 1.1501 | 0.8346 | 0.7717 | 0.8987 | 0.6762 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0 - Datasets 2.20.0 - Tokenizers 0.19.1