Update README.md
Browse files
README.md
CHANGED
@@ -1,69 +1,70 @@
|
|
1 |
-
---
|
2 |
-
base_model: daveni/twitter-xlm-roberta-emotion-es
|
3 |
-
tags:
|
4 |
-
- generated_from_trainer
|
5 |
-
metrics:
|
6 |
-
- accuracy
|
7 |
-
- f1
|
8 |
-
- precision
|
9 |
-
- recall
|
10 |
-
model-index:
|
11 |
-
- name: base
|
12 |
-
results: []
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
-
|
47 |
-
-
|
48 |
-
-
|
49 |
-
-
|
50 |
-
-
|
51 |
-
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
-
|
68 |
-
-
|
69 |
-
-
|
|
|
|
1 |
+
---
|
2 |
+
base_model: daveni/twitter-xlm-roberta-emotion-es
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: base
|
12 |
+
results: []
|
13 |
+
pipeline_tag: text-classification
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# base
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [daveni/twitter-xlm-roberta-emotion-es](https://huggingface.co/daveni/twitter-xlm-roberta-emotion-es) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.4881
|
24 |
+
- Accuracy: 0.8504
|
25 |
+
- F1: 0.8119
|
26 |
+
- Precision: 0.8454
|
27 |
+
- Recall: 0.7810
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 16
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 5
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
58 |
+
| 0.667 | 1.0 | 32 | 0.5528 | 0.7283 | 0.6057 | 0.7571 | 0.5048 |
|
59 |
+
| 0.5241 | 2.0 | 64 | 0.4843 | 0.7874 | 0.7065 | 0.8228 | 0.6190 |
|
60 |
+
| 0.3046 | 3.0 | 96 | 0.4785 | 0.8031 | 0.7423 | 0.8090 | 0.6857 |
|
61 |
+
| 0.1631 | 4.0 | 128 | 0.4776 | 0.8228 | 0.7644 | 0.8488 | 0.6952 |
|
62 |
+
| 0.097 | 5.0 | 160 | 0.4881 | 0.8504 | 0.8119 | 0.8454 | 0.7810 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.43.3
|
68 |
+
- Pytorch 2.4.0
|
69 |
+
- Datasets 2.20.0
|
70 |
+
- Tokenizers 0.19.1
|