raulgdp commited on
Commit
f7878f5
1 Parent(s): 457d686

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -69
README.md CHANGED
@@ -1,69 +1,70 @@
1
- ---
2
- base_model: daveni/twitter-xlm-roberta-emotion-es
3
- tags:
4
- - generated_from_trainer
5
- metrics:
6
- - accuracy
7
- - f1
8
- - precision
9
- - recall
10
- model-index:
11
- - name: base
12
- results: []
13
- ---
14
-
15
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
- should probably proofread and complete it, then remove this comment. -->
17
-
18
- # base
19
-
20
- This model is a fine-tuned version of [daveni/twitter-xlm-roberta-emotion-es](https://huggingface.co/daveni/twitter-xlm-roberta-emotion-es) on an unknown dataset.
21
- It achieves the following results on the evaluation set:
22
- - Loss: 0.4881
23
- - Accuracy: 0.8504
24
- - F1: 0.8119
25
- - Precision: 0.8454
26
- - Recall: 0.7810
27
-
28
- ## Model description
29
-
30
- More information needed
31
-
32
- ## Intended uses & limitations
33
-
34
- More information needed
35
-
36
- ## Training and evaluation data
37
-
38
- More information needed
39
-
40
- ## Training procedure
41
-
42
- ### Training hyperparameters
43
-
44
- The following hyperparameters were used during training:
45
- - learning_rate: 5e-05
46
- - train_batch_size: 32
47
- - eval_batch_size: 16
48
- - seed: 42
49
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
- - lr_scheduler_type: linear
51
- - num_epochs: 5
52
-
53
- ### Training results
54
-
55
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
56
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
57
- | 0.667 | 1.0 | 32 | 0.5528 | 0.7283 | 0.6057 | 0.7571 | 0.5048 |
58
- | 0.5241 | 2.0 | 64 | 0.4843 | 0.7874 | 0.7065 | 0.8228 | 0.6190 |
59
- | 0.3046 | 3.0 | 96 | 0.4785 | 0.8031 | 0.7423 | 0.8090 | 0.6857 |
60
- | 0.1631 | 4.0 | 128 | 0.4776 | 0.8228 | 0.7644 | 0.8488 | 0.6952 |
61
- | 0.097 | 5.0 | 160 | 0.4881 | 0.8504 | 0.8119 | 0.8454 | 0.7810 |
62
-
63
-
64
- ### Framework versions
65
-
66
- - Transformers 4.43.3
67
- - Pytorch 2.4.0
68
- - Datasets 2.20.0
69
- - Tokenizers 0.19.1
 
 
1
+ ---
2
+ base_model: daveni/twitter-xlm-roberta-emotion-es
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: base
12
+ results: []
13
+ pipeline_tag: text-classification
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # base
20
+
21
+ This model is a fine-tuned version of [daveni/twitter-xlm-roberta-emotion-es](https://huggingface.co/daveni/twitter-xlm-roberta-emotion-es) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.4881
24
+ - Accuracy: 0.8504
25
+ - F1: 0.8119
26
+ - Precision: 0.8454
27
+ - Recall: 0.7810
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 32
48
+ - eval_batch_size: 16
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 5
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
+ | 0.667 | 1.0 | 32 | 0.5528 | 0.7283 | 0.6057 | 0.7571 | 0.5048 |
59
+ | 0.5241 | 2.0 | 64 | 0.4843 | 0.7874 | 0.7065 | 0.8228 | 0.6190 |
60
+ | 0.3046 | 3.0 | 96 | 0.4785 | 0.8031 | 0.7423 | 0.8090 | 0.6857 |
61
+ | 0.1631 | 4.0 | 128 | 0.4776 | 0.8228 | 0.7644 | 0.8488 | 0.6952 |
62
+ | 0.097 | 5.0 | 160 | 0.4881 | 0.8504 | 0.8119 | 0.8454 | 0.7810 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.43.3
68
+ - Pytorch 2.4.0
69
+ - Datasets 2.20.0
70
+ - Tokenizers 0.19.1