File size: 2,214 Bytes
8ed0b2d 04ab68d 8ed0b2d 04ab68d 8ed0b2d 04ab68d 8ed0b2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: mit
base_model: xlnet-base-cased
tags:
- generated_from_trainer
model-index:
- name: XLnet-cased-AS-HU-f1-score
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLnet-cased-AS-HU-f1-score
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co./xlnet-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6569
- F1-score: 0.8203
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7105 | 1.0 | 64 | 0.6670 | 0.3697 |
| 0.654 | 2.0 | 128 | 0.6053 | 0.6119 |
| 0.509 | 3.0 | 192 | 0.4952 | 0.7471 |
| 0.3514 | 4.0 | 256 | 0.5171 | 0.7849 |
| 0.2233 | 5.0 | 320 | 0.6229 | 0.8059 |
| 0.1441 | 6.0 | 384 | 0.9291 | 0.8112 |
| 0.1376 | 7.0 | 448 | 1.4415 | 0.7421 |
| 0.0624 | 8.0 | 512 | 1.3527 | 0.8128 |
| 0.0224 | 9.0 | 576 | 1.4643 | 0.8103 |
| 0.0136 | 10.0 | 640 | 1.3725 | 0.8268 |
| 0.0177 | 11.0 | 704 | 1.5826 | 0.8142 |
| 0.0101 | 12.0 | 768 | 1.6241 | 0.8150 |
| 0.0003 | 13.0 | 832 | 1.6149 | 0.8165 |
| 0.0002 | 14.0 | 896 | 1.6481 | 0.8203 |
| 0.0001 | 15.0 | 960 | 1.6569 | 0.8203 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.0.1+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
|