File size: 1,874 Bytes
e35ce5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: xlnet-base-cased
tags:
- generated_from_trainer
model-index:
- name: mytest_trainer_base-cased
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mytest_trainer_base-cased

This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co./xlnet-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1983
- Rmse: 0.2961

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rmse   |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2679        | 1.0   | 642  | 0.2250          | 0.3848 |
| 0.2659        | 2.0   | 1284 | 0.2318          | 0.4252 |
| 0.2505        | 3.0   | 1926 | 0.2295          | 0.3848 |
| 0.2478        | 4.0   | 2568 | 0.2329          | 0.3848 |
| 0.2459        | 5.0   | 3210 | 0.2328          | 0.3848 |
| 0.2452        | 6.0   | 3852 | 0.2215          | 0.3848 |
| 0.2522        | 7.0   | 4494 | 0.2444          | 0.3848 |
| 0.2505        | 8.0   | 5136 | 0.2164          | 0.3504 |
| 0.2087        | 9.0   | 5778 | 0.2409          | 0.3152 |
| 0.1736        | 10.0  | 6420 | 0.1983          | 0.2961 |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.13.3