File size: 1,388 Bytes
43ae88e 5ae3c8d 43ae88e f735258 43ae88e 5ae3c8d 73835d4 5ae3c8d 43ae88e 5ae3c8d 43ae88e 5ae3c8d 43ae88e 5ae3c8d 43ae88e 5ae3c8d 43ae88e 5ae3c8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
library_name: transformers
language:
- am
base_model:
- rasyosef/Llama-3.2-180M-Amharic
---
This model is an Instruction-Tuned version of [Llama 3.2 180M Amharic](https://huggingface.co./rasyosef/Llama-3.2-180M-Amharic).
### How to use
### Chat Format
Given the nature of the training data, the phi-2 instruct model is best suited for prompts using the chat format as follows.
You can provide the prompt as a question with a generic template as follows:
```markdown
<|im_start|>user
ጥያቄ?<|im_end|>
<|im_start|>assistant
```
For example:
```markdown
<|im_start|>user
ሶስት የአፍሪካ ሀገራት ጥቀስልኝ<|im_end|>
<|im_start|>assistant
```
where the model generates the text after `<|im_start|>assistant` .
### Sample inference code
First, you need to install the latest version of transformers
```
pip install -Uq transformers
```
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
llama3_am = pipeline(
"text-generation",
model="rasyosef/Llama-3.2-180M-Amharic-Instruct",
device_map="auto"
)
messages = [{"role": "user", "content": "ሶስት የአፍሪካ ሀገራት ጥቀስልኝ"}]
llama3_am(messages, max_new_tokens=128, repetition_penalty=1.1, return_full_text=False)
```
Output:
```python
[{'generated_text': '1. ግብፅ 2. ኢትዮጵያ 3. ኬንያ'}]
``` |