File size: 1,872 Bytes
65dc3d3
 
 
 
 
 
613174b
65dc3d3
 
 
 
 
 
613174b
65dc3d3
 
 
613174b
 
 
 
65dc3d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613174b
 
 
 
 
 
 
 
65dc3d3
 
 
 
 
 
613174b
65dc3d3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: cantonese-chinese-translation
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cantonese-chinese-translation

This model is a fine-tuned version of [fnlp/bart-base-chinese](https://huggingface.co./fnlp/bart-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2370
- Bleu: 62.9641
- Chrf: 60.8644
- Gen Len: 12.8539

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu    | Chrf    | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|
| 0.3589        | 0.48  | 1000 | 0.2446          | 62.6737 | 60.5633 | 12.874  |
| 0.3038        | 0.96  | 2000 | 0.2347          | 62.8493 | 60.8189 | 12.8479 |
| 0.2301        | 1.44  | 3000 | 0.2370          | 62.9641 | 60.8644 | 12.8539 |
| 0.2267        | 1.92  | 4000 | 0.2323          | 62.9373 | 60.7878 | 12.9001 |
| 0.1725        | 2.39  | 5000 | 0.2431          | 62.7294 | 60.5396 | 12.8728 |
| 0.1665        | 2.87  | 6000 | 0.2399          | 62.6086 | 60.4485 | 12.8479 |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3