ramy21 commited on
Commit
c85f1db
β€’
1 Parent(s): d8efbaa

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - cerebras/SlimPajama-627B
5
+ - bigcode/starcoderdata
6
+ language:
7
+ - en
8
+ ---
9
+ <div align="center">
10
+
11
+ # TinyLlama-1.1B
12
+ </div>
13
+
14
+ https://github.com/jzhang38/TinyLlama
15
+
16
+ The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€. The training has started on 2023-09-01.
17
+
18
+ <div align="center">
19
+ <img src="./TinyLlama_logo.png" width="300"/>
20
+ </div>
21
+
22
+ We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
23
+
24
+ #### This Model
25
+ This is an intermediate checkpoint with 50K steps and 105B tokens.
26
+
27
+ #### Releases Schedule
28
+ We will be rolling out intermediate checkpoints following the below schedule. We also include some baseline models for comparison.
29
+
30
+ | Date | HF Checkpoint | Tokens | Step | HellaSwag Acc_norm |
31
+ |------------|-------------------------------------------------|--------|------|---------------------|
32
+ | Baseline | [StableLM-Alpha-3B](https://huggingface.co/stabilityai/stablelm-base-alpha-3b)| 800B | -- | 38.31 |
33
+ | Baseline | [Pythia-1B-intermediate-step-50k-105b](https://huggingface.co/EleutherAI/pythia-1b/tree/step50000) | 105B | 50k | 42.04 |
34
+ | Baseline | [Pythia-1B](https://huggingface.co/EleutherAI/pythia-1b) | 300B | 143k | 47.16 |
35
+ | 2023-09-04 | [TinyLlama-1.1B-intermediate-step-50k-105b](https://huggingface.co/PY007/TinyLlama-1.1B-step-50K-105b) | 105B | 50k | 43.50 |
36
+ | 2023-09-16 | -- | 500B | -- | -- |
37
+ | 2023-10-01 | -- | 1T | -- | -- |
38
+ | 2023-10-16 | -- | 1.5T | -- | -- |
39
+ | 2023-10-31 | -- | 2T | -- | -- |
40
+ | 2023-11-15 | -- | 2.5T | -- | -- |
41
+ | 2023-12-01 | -- | 3T | -- | -- |
42
+
43
+ #### How to use
44
+ You will need the transformers>=4.31
45
+ Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
46
+ ```
47
+ from transformers import AutoTokenizer
48
+ import transformers
49
+ import torch
50
+ model = "PY007/TinyLlama-1.1B-step-50K-105b"
51
+ tokenizer = AutoTokenizer.from_pretrained(model)
52
+ pipeline = transformers.pipeline(
53
+ "text-generation",
54
+ model=model,
55
+ torch_dtype=torch.float16,
56
+ device_map="auto",
57
+ )
58
+
59
+ sequences = pipeline(
60
+ 'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€. The training has started on 2023-09-01.',
61
+ do_sample=True,
62
+ top_k=10,
63
+ num_return_sequences=1,
64
+ repetition_penalty=1.5,
65
+ eos_token_id=tokenizer.eos_token_id,
66
+ max_length=500,
67
+ )
68
+ for seq in sequences:
69
+ print(f"Result: {seq['generated_text']}")
70
+ ```