--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.93 --- # ast-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co./MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4436 - Accuracy: 0.93 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0001 | 1.0 | 225 | 0.5546 | 0.89 | | 1.204 | 2.0 | 450 | 0.9484 | 0.81 | | 0.4719 | 3.0 | 675 | 0.7417 | 0.85 | | 0.0132 | 4.0 | 900 | 0.7101 | 0.9 | | 0.0527 | 5.0 | 1125 | 0.8170 | 0.86 | | 0.0 | 6.0 | 1350 | 0.6406 | 0.93 | | 0.3099 | 7.0 | 1575 | 0.8426 | 0.84 | | 0.0 | 8.0 | 1800 | 0.9173 | 0.89 | | 0.0 | 9.0 | 2025 | 0.7142 | 0.9 | | 0.0602 | 10.0 | 2250 | 0.4718 | 0.92 | | 0.0003 | 11.0 | 2475 | 0.9860 | 0.9 | | 0.0001 | 12.0 | 2700 | 0.5918 | 0.91 | | 0.0 | 13.0 | 2925 | 0.4886 | 0.92 | | 0.0 | 14.0 | 3150 | 0.4562 | 0.93 | | 0.0 | 15.0 | 3375 | 0.4360 | 0.94 | | 0.0 | 16.0 | 3600 | 0.4433 | 0.94 | | 0.0 | 17.0 | 3825 | 0.4454 | 0.94 | | 0.0 | 18.0 | 4050 | 0.4454 | 0.94 | | 0.0 | 19.0 | 4275 | 0.4434 | 0.93 | | 0.0 | 20.0 | 4500 | 0.4436 | 0.93 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3