File size: 2,025 Bytes
dc4a8e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-xsumfinetuned-samsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-large-xsumfinetuned-samsum

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9976
- Rouge1: 0.4246
- Rouge2: 0.2069
- Rougel: 0.3253
- Rougelsum: 0.3907

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|
| 0.2858        | 1.0   | 3683  | 2.3127          | 0.4051 | 0.1926 | 0.3072 | 0.3720    |
| 0.3128        | 2.0   | 7366  | 2.3467          | 0.4007 | 0.1911 | 0.3037 | 0.3687    |
| 0.2544        | 3.0   | 11049 | 2.3126          | 0.4145 | 0.2019 | 0.3159 | 0.3801    |
| 0.1846        | 4.0   | 14732 | 2.6484          | 0.4088 | 0.1977 | 0.3096 | 0.3774    |
| 0.1143        | 5.0   | 18415 | 2.7793          | 0.4173 | 0.1997 | 0.3155 | 0.3843    |
| 0.0687        | 6.0   | 22098 | 2.9976          | 0.4246 | 0.2069 | 0.3253 | 0.3907    |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1