File size: 2,328 Bytes
c09312c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: mit
base_model: FacebookAI/roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: STS-conventional-Fine-Tuning-Capstone-roberta-base-filtered-200
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# STS-conventional-Fine-Tuning-Capstone-roberta-base-filtered-200
This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co./FacebookAI/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1218
- Accuracy: 0.7322
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 113 | 0.7870 | 0.6704 |
| No log | 2.0 | 226 | 0.7207 | 0.6779 |
| No log | 3.0 | 339 | 0.7853 | 0.7022 |
| No log | 4.0 | 452 | 0.8490 | 0.6742 |
| 0.513 | 5.0 | 565 | 1.0300 | 0.6835 |
| 0.513 | 6.0 | 678 | 1.1645 | 0.7060 |
| 0.513 | 7.0 | 791 | 1.4119 | 0.7210 |
| 0.513 | 8.0 | 904 | 1.5641 | 0.7154 |
| 0.1552 | 9.0 | 1017 | 1.7410 | 0.6966 |
| 0.1552 | 10.0 | 1130 | 1.8357 | 0.7228 |
| 0.1552 | 11.0 | 1243 | 1.9442 | 0.7116 |
| 0.1552 | 12.0 | 1356 | 1.9521 | 0.7266 |
| 0.1552 | 13.0 | 1469 | 2.0899 | 0.7172 |
| 0.0481 | 14.0 | 1582 | 2.1138 | 0.7210 |
| 0.0481 | 15.0 | 1695 | 2.1218 | 0.7322 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|