File size: 2,328 Bytes
c09312c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
base_model: FacebookAI/roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: STS-conventional-Fine-Tuning-Capstone-roberta-base-filtered-200
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# STS-conventional-Fine-Tuning-Capstone-roberta-base-filtered-200

This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co./FacebookAI/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1218
- Accuracy: 0.7322

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 113  | 0.7870          | 0.6704   |
| No log        | 2.0   | 226  | 0.7207          | 0.6779   |
| No log        | 3.0   | 339  | 0.7853          | 0.7022   |
| No log        | 4.0   | 452  | 0.8490          | 0.6742   |
| 0.513         | 5.0   | 565  | 1.0300          | 0.6835   |
| 0.513         | 6.0   | 678  | 1.1645          | 0.7060   |
| 0.513         | 7.0   | 791  | 1.4119          | 0.7210   |
| 0.513         | 8.0   | 904  | 1.5641          | 0.7154   |
| 0.1552        | 9.0   | 1017 | 1.7410          | 0.6966   |
| 0.1552        | 10.0  | 1130 | 1.8357          | 0.7228   |
| 0.1552        | 11.0  | 1243 | 1.9442          | 0.7116   |
| 0.1552        | 12.0  | 1356 | 1.9521          | 0.7266   |
| 0.1552        | 13.0  | 1469 | 2.0899          | 0.7172   |
| 0.0481        | 14.0  | 1582 | 2.1138          | 0.7210   |
| 0.0481        | 15.0  | 1695 | 2.1218          | 0.7322   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2