Rajat commited on
Commit
6c65f0a
1 Parent(s): d4d101a

adds model

Browse files
Files changed (49) hide show
  1. bge-small-hotpotwa-matryoshka-fine-tuned-50/README.md +1 -0
  2. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/1_Pooling/config.json +10 -0
  3. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/README.md +740 -0
  4. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/config.json +31 -0
  5. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/config_sentence_transformers.json +10 -0
  6. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/model.safetensors +3 -0
  7. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/modules.json +20 -0
  8. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/optimizer.pt +3 -0
  9. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/rng_state.pth +3 -0
  10. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/scheduler.pt +3 -0
  11. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/sentence_bert_config.json +4 -0
  12. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/special_tokens_map.json +37 -0
  13. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/tokenizer.json +0 -0
  14. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/tokenizer_config.json +57 -0
  15. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/trainer_state.json +0 -0
  16. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/training_args.bin +3 -0
  17. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/vocab.txt +0 -0
  18. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/1_Pooling/config.json +10 -0
  19. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/README.md +750 -0
  20. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/config.json +31 -0
  21. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/config_sentence_transformers.json +10 -0
  22. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/model.safetensors +3 -0
  23. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/modules.json +20 -0
  24. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/optimizer.pt +3 -0
  25. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/rng_state.pth +3 -0
  26. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/scheduler.pt +3 -0
  27. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/sentence_bert_config.json +4 -0
  28. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/special_tokens_map.json +37 -0
  29. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/tokenizer.json +0 -0
  30. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/tokenizer_config.json +57 -0
  31. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/trainer_state.json +0 -0
  32. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/training_args.bin +3 -0
  33. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/vocab.txt +0 -0
  34. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/1_Pooling/config.json +10 -0
  35. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/README.md +652 -0
  36. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/config.json +31 -0
  37. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/config_sentence_transformers.json +10 -0
  38. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/model.safetensors +3 -0
  39. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/modules.json +20 -0
  40. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/optimizer.pt +3 -0
  41. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/rng_state.pth +3 -0
  42. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/scheduler.pt +3 -0
  43. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/sentence_bert_config.json +4 -0
  44. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/special_tokens_map.json +37 -0
  45. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/tokenizer.json +0 -0
  46. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/tokenizer_config.json +57 -0
  47. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/trainer_state.json +393 -0
  48. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/training_args.bin +3 -0
  49. bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/vocab.txt +0 -0
bge-small-hotpotwa-matryoshka-fine-tuned-50/README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ hello
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/README.md ADDED
@@ -0,0 +1,740 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en
3
+ datasets:
4
+ - sentence-transformers/hotpotqa
5
+ language:
6
+ - en
7
+ library_name: sentence-transformers
8
+ license: apache-2.0
9
+ metrics:
10
+ - cosine_accuracy
11
+ - dot_accuracy
12
+ - manhattan_accuracy
13
+ - euclidean_accuracy
14
+ - max_accuracy
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - generated_from_trainer
21
+ - dataset_size:76064
22
+ - loss:MatryoshkaLoss
23
+ - loss:TripletLoss
24
+ widget:
25
+ - source_sentence: When was the brewery founded by the family who resided in the Lemp
26
+ Mansion founded?
27
+ sentences:
28
+ - Latrobe Brewing Company Latrobe Brewing Company in Latrobe, Pennsylvania, founded
29
+ in 1839, was one of the largest breweries in the United States and the maker of
30
+ "Rolling Rock" beer (famous for its small green bottles). It was purchased by
31
+ Labatt Brewing Company in 1987, which in turn was purchased in 1995 by the Belgian
32
+ brewing conglomerate corporation Interbrew, which merged later into InBev in 2004.
33
+ - Lemp Mansion The Lemp Mansion (3322 DeMenil Place, St. Louis, Missouri) is a historical
34
+ house in Benton Park, St. Louis, Missouri. It is also the site of four suicides
35
+ by Lemp family members after the death of the son Frederick Lemp, whose William
36
+ J. Lemp Brewing Co. dominated the St. Louis beer market before Prohibition with
37
+ its Falstaff beer brand. The mansion is said to be haunted by members of the Lemp
38
+ family.
39
+ - 'Man of the House (song) "Man of the House" is a song co-written and recorded
40
+ by American country music artist Chuck Wicks. It was released in January 2009
41
+ as the third single from the album "Starting Now". The song reached #27 on the
42
+ "Billboard" Hot Country Songs chart. The song was written by Wicks and Michael
43
+ Mobley.'
44
+ - source_sentence: Who is the translator and researcher who served as a dean at Hartford
45
+ Junior College and translated her Belgian-French partner's 1968 work into English?
46
+ sentences:
47
+ - William L. Shirer William Lawrence Shirer (February 23, 1904 – December 28, 1993)
48
+ was an American journalist and war correspondent. He wrote "The Rise and Fall
49
+ of the Third Reich", a history of Nazi Germany that has been read by many and
50
+ cited in scholarly works for more than 50 years. Originally a foreign correspondent
51
+ for the "Chicago Tribune" and the International News Service, Shirer was the first
52
+ reporter hired by Edward R. Murrow for what would become a CBS radio team of journalists
53
+ known as "Murrow's Boys". He became known for his broadcasts from Berlin, from
54
+ the rise of the Nazi dictatorship through the first year of World War II (1940).
55
+ With Murrow, he organized the first broadcast world news roundup, a format still
56
+ followed by news broadcasts.
57
+ - 'The Abyss (Yourcenar novel) The Abyss (French: L''Œuvre au noir ) is a 1968 novel
58
+ by the Belgian-French writer Marguerite Yourcenar. Its narrative centers on the
59
+ life and death of Zeno, a physician, philosopher, scientist and alchemist born
60
+ in Bruges during the Renaissance era. The book was published in France in 1968
61
+ and was met with immediate popular interest as well as critical acclaim, obtaining
62
+ the Prix Femina with unanimous votes the year of its publication. The English
63
+ translation by Grace Frick has been published under the title "The Abyss" or alternatively
64
+ Zeno of Bruges. Belgian filmmaker André Delvaux adapted it into a film in 1988.'
65
+ - Pierre L. van den Berghe Pierre L. van den Berghe (born 1933) is professor emeritus
66
+ of sociology and anthropology at the University of Washington, where he has worked
67
+ since 1965. Born in the Belgian Congo to Belgian parents, and spending World War
68
+ II in occupied Belgium, he was an early witness to ethnic conflict and racism,
69
+ which eventually led him to become a leading authority on ethnic relations. He
70
+ has conducted field work in South Africa, Mexico, Guatemala, Iran, Lebanon, Nigeria,
71
+ Peru, and Israel. Early in his career, he lectured at the University of Natal
72
+ alongside Leo Kuper and Fatima Meer. A student of Talcott Parsons at Harvard (receiving
73
+ the Ph.D. in 1960), he nevertheless had little interest in structural functionalism
74
+ and was one of the first proponents of sociobiological approaches to social phenomena.
75
+ - source_sentence: Them Crooked Vultures and The Vines are both part of what music
76
+ genres?
77
+ sentences:
78
+ - Friendly Center Friendly Center is a large, open-air shopping center located in
79
+ northwestern Greensboro, North Carolina, near the intersection of Wendover Avenue
80
+ and Friendly Avenue. The shopping center opened in August 1957, and with its inward
81
+ orientation, Friendly Center could be classified as an outdoor lifestyle center.
82
+ Its anchor tenants include Belk, Macy's, and Sears. Other tenants include Barnes
83
+ & Noble, Old Navy, The Grande Theatre is a 16-screen multiplex cinema operated
84
+ by Regal Cinemas. It also contains Harris Teeter's flagship supermarket location
85
+ encompassing 72,000 square feet (6,700 m2) and Whole Foods Market. There are specialty
86
+ "foodie" stores tucked away in the back corner by Harris Teeter such as the Savory
87
+ Spice Shop and Midtown Olive Oil. It features a number of national retailers such
88
+ as Banana Republic, Victoria's Secret, The Limited, Bath & Body Works, Express,
89
+ The GAP, Eddie Bauer, Talbots, Birkenstock Feet First, Pier 1, and New York &
90
+ Company.
91
+ - Twin Wild Twin Wild is a British four-piece alternative rock band. Formed in 2012,
92
+ the band is made up of the collective creative energies of Richard Hutchison (vocals,
93
+ guitars), Imran Mair (drums), David Cuzner (guitars) and Edward Thomas (bass).
94
+ In 2014, the band self-released their track "Fears", which garnered over half
95
+ a million plays on Soundcloud and charted in Spotify’s Top 20 viral chart. Their
96
+ style of music has been compared to the likes of Foals, The Neighbourhood, and
97
+ Bastille. The band have been hailed by Edith Bowman as "The love child of Bastille
98
+ and Biffy Clyro".
99
+ - Them Crooked Vultures Them Crooked Vultures is a rock supergroup formed in Los
100
+ Angeles in 2009 by John Paul Jones (former member of Led Zeppelin) on bass and
101
+ keyboards, Dave Grohl (of Foo Fighters and formerly of Nirvana) on drums and backing
102
+ vocals, and Josh Homme (of Queens of the Stone Age, Eagles of Death Metal and
103
+ formerly of Kyuss) on guitar and vocals. The group also includes guitarist Alain
104
+ Johannes during live performances. The band began recording in February 2009,
105
+ and performed their first gig on August 9, 2009, in Chicago, followed by a European
106
+ debut on August 19. On October 1 the group embarked on a worldwide tour titled
107
+ "Deserve the Future" with dates going into 2010. The band's first single "New
108
+ Fang" was released in October 2009, followed by the group's self-titled debut
109
+ album the following month, debuting at number 12 on the "Billboard" 200. The group
110
+ won the 2011 Grammy Award for Best Hard Rock Performance for "New Fang".
111
+ - source_sentence: What type of collection does Nådens år and Agnetha Fältskog have
112
+ in common?
113
+ sentences:
114
+ - Gardiner Island (Nunavut) Gardiner Island is one of the many uninhabited Canadian
115
+ arctic islands in Qikiqtaaluk Region, Nunavut. It is a Baffin Island offshore
116
+ island located in Frobisher Bay south of the capital city of Iqaluit.
117
+ - Nådens år Nådens år (The Year of Grace) is the third studio album by the Swedish
118
+ rock artist Ulf Lundell. It was released in April 1978 on EMI and Parlophone.
119
+ It was recorded in EMI Studio, Stockholm, and produced by Kjell Andersson and
120
+ Lundell. It includes "Snön faller och vi med den" ("The snow is falling and we
121
+ are too"), one of Lundell's more famous songs. Agnetha Fältskog is involved in
122
+ the song. The cover picture shows Lundell sitting on a rock next to a dog and
123
+ was taken in Åre in 1977. "Nådens år" achieved Gold status in Sweden.
124
+ - Åsa Elzén Åsa Elzén is an artist whose work is informed by feminist theory, intersectionality
125
+ and post-colonialism. Elzén was born in Sweden in 1972 and currently lives and
126
+ works in Berlin.
127
+ - source_sentence: Red Velvet is a 2012 play by Lolita Chakrabarti, dealing with the
128
+ biography of a 19th century actor born in which year ?
129
+ sentences:
130
+ - Herbert Campbell Herbert Campbell (22 December 1844 – 19 July 1904) born Herbert
131
+ Edward Story was an English comedian and actor who appeared in music hall, Victorian
132
+ burlesques and musical comedies during the Victorian era. He was famous for starring,
133
+ for forty years, in the Theatre Royal, Drury Lane's annual Christmas pantomimes,
134
+ predominantly as a dame.
135
+ - Leptinella Leptinella is a genus of alpine flowering plant in the Asteraceae family,
136
+ comprising 33 species, distributed in New Guinea, Australia, New Zealand, South
137
+ Africa, and South America. Many of the species are endemic to New Zealand.
138
+ - Red Velvet (play) Red Velvet is a 2012 play by Lolita Chakrabarti, dealing with
139
+ the biography of the 19th century actor Ira Aldridge and his taking the role of
140
+ "Othello". It premiered at the Tricycle Theatre (directed by its new artistic
141
+ director Indhu Rubasingham) from 11 October to 24 November 2012, with Aldridge
142
+ played by Adrian Lester.
143
+ model-index:
144
+ - name: BGE-base-en-v1.5-Hotpotqa
145
+ results:
146
+ - task:
147
+ type: triplet
148
+ name: Triplet
149
+ dataset:
150
+ name: dim 384
151
+ type: dim_384
152
+ metrics:
153
+ - type: cosine_accuracy
154
+ value: 0.8761239943208708
155
+ name: Cosine Accuracy
156
+ - type: dot_accuracy
157
+ value: 0.1238760056791292
158
+ name: Dot Accuracy
159
+ - type: manhattan_accuracy
160
+ value: 0.8770705158542357
161
+ name: Manhattan Accuracy
162
+ - type: euclidean_accuracy
163
+ value: 0.8761239943208708
164
+ name: Euclidean Accuracy
165
+ - type: max_accuracy
166
+ value: 0.8770705158542357
167
+ name: Max Accuracy
168
+ - task:
169
+ type: triplet
170
+ name: Triplet
171
+ dataset:
172
+ name: dim 256
173
+ type: dim_256
174
+ metrics:
175
+ - type: cosine_accuracy
176
+ value: 0.8761239943208708
177
+ name: Cosine Accuracy
178
+ - type: dot_accuracy
179
+ value: 0.1250591575958353
180
+ name: Dot Accuracy
181
+ - type: manhattan_accuracy
182
+ value: 0.8797917652626597
183
+ name: Manhattan Accuracy
184
+ - type: euclidean_accuracy
185
+ value: 0.8761239943208708
186
+ name: Euclidean Accuracy
187
+ - type: max_accuracy
188
+ value: 0.8797917652626597
189
+ name: Max Accuracy
190
+ - task:
191
+ type: triplet
192
+ name: Triplet
193
+ dataset:
194
+ name: dim 128
195
+ type: dim_128
196
+ metrics:
197
+ - type: cosine_accuracy
198
+ value: 0.8724562233790819
199
+ name: Cosine Accuracy
200
+ - type: dot_accuracy
201
+ value: 0.13073828679602462
202
+ name: Dot Accuracy
203
+ - type: manhattan_accuracy
204
+ value: 0.8783719829626124
205
+ name: Manhattan Accuracy
206
+ - type: euclidean_accuracy
207
+ value: 0.8728111689540937
208
+ name: Euclidean Accuracy
209
+ - type: max_accuracy
210
+ value: 0.8783719829626124
211
+ name: Max Accuracy
212
+ - task:
213
+ type: triplet
214
+ name: Triplet
215
+ dataset:
216
+ name: dim 64
217
+ type: dim_64
218
+ metrics:
219
+ - type: cosine_accuracy
220
+ value: 0.8710364410790346
221
+ name: Cosine Accuracy
222
+ - type: dot_accuracy
223
+ value: 0.143989588263133
224
+ name: Dot Accuracy
225
+ - type: manhattan_accuracy
226
+ value: 0.8764789398958827
227
+ name: Manhattan Accuracy
228
+ - type: euclidean_accuracy
229
+ value: 0.867841930903928
230
+ name: Euclidean Accuracy
231
+ - type: max_accuracy
232
+ value: 0.8764789398958827
233
+ name: Max Accuracy
234
+ ---
235
+
236
+ # BGE-base-en-v1.5-Hotpotqa
237
+
238
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) on the [sentence-transformers/hotpotqa](https://huggingface.co/datasets/sentence-transformers/hotpotqa) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
239
+
240
+ ## Model Details
241
+
242
+ ### Model Description
243
+ - **Model Type:** Sentence Transformer
244
+ - **Base model:** [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) <!-- at revision 2275a7bdee235e9b4f01fa73aa60d3311983cfea -->
245
+ - **Maximum Sequence Length:** 512 tokens
246
+ - **Output Dimensionality:** 384 tokens
247
+ - **Similarity Function:** Cosine Similarity
248
+ - **Training Dataset:**
249
+ - [sentence-transformers/hotpotqa](https://huggingface.co/datasets/sentence-transformers/hotpotqa)
250
+ - **Language:** en
251
+ - **License:** apache-2.0
252
+
253
+ ### Model Sources
254
+
255
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
256
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
257
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
258
+
259
+ ### Full Model Architecture
260
+
261
+ ```
262
+ SentenceTransformer(
263
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
264
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
265
+ (2): Normalize()
266
+ )
267
+ ```
268
+
269
+ ## Usage
270
+
271
+ ### Direct Usage (Sentence Transformers)
272
+
273
+ First install the Sentence Transformers library:
274
+
275
+ ```bash
276
+ pip install -U sentence-transformers
277
+ ```
278
+
279
+ Then you can load this model and run inference.
280
+ ```python
281
+ from sentence_transformers import SentenceTransformer
282
+
283
+ # Download from the 🤗 Hub
284
+ model = SentenceTransformer("sentence_transformers_model_id")
285
+ # Run inference
286
+ sentences = [
287
+ 'Red Velvet is a 2012 play by Lolita Chakrabarti, dealing with the biography of a 19th century actor born in which year ?',
288
+ 'Red Velvet (play) Red Velvet is a 2012 play by Lolita Chakrabarti, dealing with the biography of the 19th century actor Ira Aldridge and his taking the role of "Othello". It premiered at the Tricycle Theatre (directed by its new artistic director Indhu Rubasingham) from 11 October to 24 November 2012, with Aldridge played by Adrian Lester.',
289
+ "Herbert Campbell Herbert Campbell (22 December 1844 – 19 July 1904) born Herbert Edward Story was an English comedian and actor who appeared in music hall, Victorian burlesques and musical comedies during the Victorian era. He was famous for starring, for forty years, in the Theatre Royal, Drury Lane's annual Christmas pantomimes, predominantly as a dame.",
290
+ ]
291
+ embeddings = model.encode(sentences)
292
+ print(embeddings.shape)
293
+ # [3, 384]
294
+
295
+ # Get the similarity scores for the embeddings
296
+ similarities = model.similarity(embeddings, embeddings)
297
+ print(similarities.shape)
298
+ # [3, 3]
299
+ ```
300
+
301
+ <!--
302
+ ### Direct Usage (Transformers)
303
+
304
+ <details><summary>Click to see the direct usage in Transformers</summary>
305
+
306
+ </details>
307
+ -->
308
+
309
+ <!--
310
+ ### Downstream Usage (Sentence Transformers)
311
+
312
+ You can finetune this model on your own dataset.
313
+
314
+ <details><summary>Click to expand</summary>
315
+
316
+ </details>
317
+ -->
318
+
319
+ <!--
320
+ ### Out-of-Scope Use
321
+
322
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
323
+ -->
324
+
325
+ ## Evaluation
326
+
327
+ ### Metrics
328
+
329
+ #### Triplet
330
+ * Dataset: `dim_384`
331
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
332
+
333
+ | Metric | Value |
334
+ |:--------------------|:-----------|
335
+ | **cosine_accuracy** | **0.8761** |
336
+ | dot_accuracy | 0.1239 |
337
+ | manhattan_accuracy | 0.8771 |
338
+ | euclidean_accuracy | 0.8761 |
339
+ | max_accuracy | 0.8771 |
340
+
341
+ #### Triplet
342
+ * Dataset: `dim_256`
343
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
344
+
345
+ | Metric | Value |
346
+ |:--------------------|:-----------|
347
+ | **cosine_accuracy** | **0.8761** |
348
+ | dot_accuracy | 0.1251 |
349
+ | manhattan_accuracy | 0.8798 |
350
+ | euclidean_accuracy | 0.8761 |
351
+ | max_accuracy | 0.8798 |
352
+
353
+ #### Triplet
354
+ * Dataset: `dim_128`
355
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
356
+
357
+ | Metric | Value |
358
+ |:--------------------|:-----------|
359
+ | **cosine_accuracy** | **0.8725** |
360
+ | dot_accuracy | 0.1307 |
361
+ | manhattan_accuracy | 0.8784 |
362
+ | euclidean_accuracy | 0.8728 |
363
+ | max_accuracy | 0.8784 |
364
+
365
+ #### Triplet
366
+ * Dataset: `dim_64`
367
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
368
+
369
+ | Metric | Value |
370
+ |:--------------------|:----------|
371
+ | **cosine_accuracy** | **0.871** |
372
+ | dot_accuracy | 0.144 |
373
+ | manhattan_accuracy | 0.8765 |
374
+ | euclidean_accuracy | 0.8678 |
375
+ | max_accuracy | 0.8765 |
376
+
377
+ <!--
378
+ ## Bias, Risks and Limitations
379
+
380
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
381
+ -->
382
+
383
+ <!--
384
+ ### Recommendations
385
+
386
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
387
+ -->
388
+
389
+ ## Training Details
390
+
391
+ ### Training Dataset
392
+
393
+ #### sentence-transformers/hotpotqa
394
+
395
+ * Dataset: [sentence-transformers/hotpotqa](https://huggingface.co/datasets/sentence-transformers/hotpotqa) at [f07d3cd](https://huggingface.co/datasets/sentence-transformers/hotpotqa/tree/f07d3cd2d290ea2e83ed35e33d67d6a4658b8786)
396
+ * Size: 76,064 training samples
397
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
398
+ * Approximate statistics based on the first 1000 samples:
399
+ | | anchor | positive | negative |
400
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
401
+ | type | string | string | string |
402
+ | details | <ul><li>min: 8 tokens</li><li>mean: 24.08 tokens</li><li>max: 95 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 100.12 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 88.02 tokens</li><li>max: 512 tokens</li></ul> |
403
+ * Samples:
404
+ | anchor | positive | negative |
405
+ |:-------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
406
+ | <code>What nationality was the player named MVP in 2017 World Baseball Classic – Pool C ?</code> | <code>2017 World Baseball Classic – Pool C Pool C of the First Round of the 2017 World Baseball Classic was held at Marlins Park, Miami, Florida, United States, from March 9 to 12, 2017, between Canada, Colombia, the Dominican Republic, and the United States. Pool C was a round-robin tournament. Each team played the other three teams once, with the top two teams – the Dominican Republic and the United States – advancing to Pool F, one of two second-round pools. Manny Machado of the Dominican Republic was named MVP for the first-round Pool C bracket of the WBC, after batting .357.</code> | <code>2017 World Baseball Classic – Qualifier 2 Qualifier 2 of the Qualifying Round of the 2017 World Baseball Classic was held at Estadio B'Air, Mexicali, Mexico from March 17 to 20, 2016.</code> |
407
+ | <code>Karl Kraepelin specialized in the study of what predatory arachnids?</code> | <code>Karl Kraepelin Karl Matthias Friedrich Magnus Kraepelin (14 December 1848 Neustrelitz – 28 June 1915 Hamburg), was a German naturalist who specialised in the study of scorpions, centipedes, spiders and solfugids, and was noted for his monograph ""Scorpiones und Pedipalpi"" (Berlin) in 1899, which was an exhaustive survey of the taxonomy of the Order Scorpiones. From 1889–1914 he was Director of the "Naturhistorisches Museum Hamburg ", which was destroyed during World War II, and worked on myriapods from 1901–1916.</code> | <code>Teuthology Teuthology (from Greek "τεῦθος" , "cuttlefish, squid", and -λογία , "-logia") is the study of cephalopods.</code> |
408
+ | <code>Who directed the 1990 American crime film in which Vito Pick me played a bit part?</code> | <code>Vito Picone Vito Picone (born March 20, 1941) is the lead singer of The Elegants, and along with Jimmy Mochella is a remaining original member. He has also played bit parts in "Goodfellas", "Analyze This", and "The Sopranos".</code> | <code>The Rookie (1990 film) The Rookie is a 1990 American buddy cop film directed by Clint Eastwood and produced by Howard G. Kazanjian, Steven Siebert and David Valdes. It was written from a screenplay conceived by Boaz Yakin and Scott Spiegel. The film stars Charlie Sheen, Clint Eastwood, Raúl Juliá, Sônia Braga, Lara Flynn Boyle, and Tom Skerritt. Eastwood plays a veteran police officer teamed up with a younger detective played by Sheen ("the rookie"), whose intent is to take down a German crime lord in downtown Los Angeles following months of investigation into an exotic car theft ring.</code> |
409
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
410
+ ```json
411
+ {
412
+ "loss": "TripletLoss",
413
+ "matryoshka_dims": [
414
+ 384,
415
+ 256,
416
+ 128,
417
+ 64
418
+ ],
419
+ "matryoshka_weights": [
420
+ 1,
421
+ 1,
422
+ 1,
423
+ 1
424
+ ],
425
+ "n_dims_per_step": -1
426
+ }
427
+ ```
428
+
429
+ ### Evaluation Dataset
430
+
431
+ #### sentence-transformers/hotpotqa
432
+
433
+ * Dataset: [sentence-transformers/hotpotqa](https://huggingface.co/datasets/sentence-transformers/hotpotqa) at [f07d3cd](https://huggingface.co/datasets/sentence-transformers/hotpotqa/tree/f07d3cd2d290ea2e83ed35e33d67d6a4658b8786)
434
+ * Size: 8,452 evaluation samples
435
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
436
+ * Approximate statistics based on the first 1000 samples:
437
+ | | anchor | positive | negative |
438
+ |:--------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
439
+ | type | string | string | string |
440
+ | details | <ul><li>min: 10 tokens</li><li>mean: 24.53 tokens</li><li>max: 114 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 103.87 tokens</li><li>max: 407 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 88.32 tokens</li><li>max: 356 tokens</li></ul> |
441
+ * Samples:
442
+ | anchor | positive | negative |
443
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
444
+ | <code>Which actress, known for her role as Harper Munroe on the MTV comedy series "Happyland", starred alongside Laura Marano, Parker Mack, Michelle Clunie and Kathleen Wilhoite in the film A Sort of Homecoming?</code> | <code>A Sort of Homecoming (film) A Sort of Homecoming is an American drama directed by Maria Burton, her fifth feature film. The films stars Katherine McNamara, Laura Marano, Parker Mack, Michelle Clunie and Kathleen Wilhoite. The film premiered March 14, 2015 at the Omaha Film Festival.</code> | <code>Nellie Bellflower Nellie Bellflower (born May 1, 1946 in Phoenix, Arizona) is an American actress and voice artist who provided the voice of Princess Ariel in the Ruby-Spears animated television series "Thundarr the Barbarian". She has also been in "The Last Unicorn" (voice), Rankin/Bass "The Return of the King", "Americathon", the miniseries "East of Eden", and guest roles on various TV shows such as "Barnaby Jones", "Barney Miller", "Starsky and Hutch", and "Happy Days" as Fonzie's ex-fiancée Maureen Johnson, a.k.a. "The Lone Stripper", in the Season 2 episode of the series titled "Fonzie's Getting Married" (episode #13). Nellie has been involved in movie production with three projects: "The Girl in Melanie Klein" (2008), "Miss Pettigrew Lives for a Day" (2008) and "Finding Neverland" (2004), for which she was nominated for an Academy Award as Producer for Best Picture. She is married to Michael Mislove.</code> |
445
+ | <code>Between Pizza Fusion and Pizzeria Venti, which restaurant emphasizes organic ingredients and green building methods?</code> | <code>Pizza Fusion Pizza Fusion is a Deerfield Beach, Florida-based pizza restaurant chain. Using mostly organic ingredients and emphasizing green building methods, the restaurants operate under the tagline Saving the Earth, One Pizza at a Time.</code> | <code>Pizza Schmizza Pizza Schmizza is an American pizza chain with 23 locations throughout the Portland, Oregon area, and two in southern Oregon. Pizza Schmizza, primarily selling thin crust pizza by-the-slice.</code> |
446
+ | <code>What company distributed the stop motion spin-off special "The Year Without a Santa Claus," which aired on December 10, 1974?</code> | <code>A Miser Brothers' Christmas A Miser Brothers' Christmas is a stop motion spin-off special based on some of the characters from the 1974 Rankin-Bass special "The Year Without a Santa Claus". Distributed by Warner Bros. Animation under their Warner Premiere label (the rights holders of the post-1974 Rankin-Bass library) and Toronto-based Cuppa Coffee Studios, the one-hour special premiered on ABC Family on Saturday, December 13, 2008, during the network's annual The 25 Days of Christmas programming. Mickey Rooney and George S. Irving reprised their respective roles as Santa Claus and Heat Miser at ages 88 and 86. Snow Miser, originally portrayed by Dick Shawn who died in 1987, was voiced by Juan Chioran, while Mrs. Claus, voiced by Shirley Booth in the original, was portrayed by Catherine Disher (because Booth had died in 1992). The movie aimed to emulate the Rankin/Bass animation style. This is the last Christmas special to feature Mickey Rooney as Santa Claus, as he died in 2014, as well as the last time George Irving voiced Heat Miser, as he died in 2016.</code> | <code>Holidaze: The Christmas That Almost Didn't Happen Holidaze: The Christmas That Almost Didn't Happen is an American stop-motion animated Christmas television special directed by David H. Brooks, that originally aired in 2006 and produced by BixPix Entertainment, Once Upon a Frog and Madison Street Entertainment. The show's plot has Rusty Reindeer (Fred Savage) the brother of Rudolph the Red Nosed Reindeer joining a support group for depressed holiday icons, and he and the other characters search for the meaning of Christmas and help a young boy (Dylan and Cole Sprouse) to get on Santa's nice list. Rusty's cohorts include Candie, the Easter Bunny (Gladys Knight); Mr. C, the grouchy cherub (Paul Rodriguez); Albert, the Thanksgiving Turkey (Harland Williams); And Trick and Treat (Brenda Song and Emily Osment) the teenage Halloween Ghosts.</code> |
447
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
448
+ ```json
449
+ {
450
+ "loss": "TripletLoss",
451
+ "matryoshka_dims": [
452
+ 384,
453
+ 256,
454
+ 128,
455
+ 64
456
+ ],
457
+ "matryoshka_weights": [
458
+ 1,
459
+ 1,
460
+ 1,
461
+ 1
462
+ ],
463
+ "n_dims_per_step": -1
464
+ }
465
+ ```
466
+
467
+ ### Training Hyperparameters
468
+ #### Non-Default Hyperparameters
469
+
470
+ - `eval_strategy`: steps
471
+ - `per_device_train_batch_size`: 32
472
+ - `per_device_eval_batch_size`: 32
473
+ - `gradient_accumulation_steps`: 16
474
+ - `learning_rate`: 2e-05
475
+ - `num_train_epochs`: 50
476
+ - `lr_scheduler_type`: cosine
477
+ - `warmup_ratio`: 0.1
478
+ - `bf16`: True
479
+ - `tf32`: True
480
+ - `load_best_model_at_end`: True
481
+ - `optim`: adamw_torch_fused
482
+ - `resume_from_checkpoint`: bge-small-hotpotwa-matryoshka
483
+ - `batch_sampler`: no_duplicates
484
+
485
+ #### All Hyperparameters
486
+ <details><summary>Click to expand</summary>
487
+
488
+ - `overwrite_output_dir`: False
489
+ - `do_predict`: False
490
+ - `eval_strategy`: steps
491
+ - `prediction_loss_only`: True
492
+ - `per_device_train_batch_size`: 32
493
+ - `per_device_eval_batch_size`: 32
494
+ - `per_gpu_train_batch_size`: None
495
+ - `per_gpu_eval_batch_size`: None
496
+ - `gradient_accumulation_steps`: 16
497
+ - `eval_accumulation_steps`: None
498
+ - `learning_rate`: 2e-05
499
+ - `weight_decay`: 0.0
500
+ - `adam_beta1`: 0.9
501
+ - `adam_beta2`: 0.999
502
+ - `adam_epsilon`: 1e-08
503
+ - `max_grad_norm`: 1.0
504
+ - `num_train_epochs`: 50
505
+ - `max_steps`: -1
506
+ - `lr_scheduler_type`: cosine
507
+ - `lr_scheduler_kwargs`: {}
508
+ - `warmup_ratio`: 0.1
509
+ - `warmup_steps`: 0
510
+ - `log_level`: passive
511
+ - `log_level_replica`: warning
512
+ - `log_on_each_node`: True
513
+ - `logging_nan_inf_filter`: True
514
+ - `save_safetensors`: True
515
+ - `save_on_each_node`: False
516
+ - `save_only_model`: False
517
+ - `restore_callback_states_from_checkpoint`: False
518
+ - `no_cuda`: False
519
+ - `use_cpu`: False
520
+ - `use_mps_device`: False
521
+ - `seed`: 42
522
+ - `data_seed`: None
523
+ - `jit_mode_eval`: False
524
+ - `use_ipex`: False
525
+ - `bf16`: True
526
+ - `fp16`: False
527
+ - `fp16_opt_level`: O1
528
+ - `half_precision_backend`: auto
529
+ - `bf16_full_eval`: False
530
+ - `fp16_full_eval`: False
531
+ - `tf32`: True
532
+ - `local_rank`: 0
533
+ - `ddp_backend`: None
534
+ - `tpu_num_cores`: None
535
+ - `tpu_metrics_debug`: False
536
+ - `debug`: []
537
+ - `dataloader_drop_last`: False
538
+ - `dataloader_num_workers`: 0
539
+ - `dataloader_prefetch_factor`: None
540
+ - `past_index`: -1
541
+ - `disable_tqdm`: False
542
+ - `remove_unused_columns`: True
543
+ - `label_names`: None
544
+ - `load_best_model_at_end`: True
545
+ - `ignore_data_skip`: False
546
+ - `fsdp`: []
547
+ - `fsdp_min_num_params`: 0
548
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
549
+ - `fsdp_transformer_layer_cls_to_wrap`: None
550
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
551
+ - `deepspeed`: None
552
+ - `label_smoothing_factor`: 0.0
553
+ - `optim`: adamw_torch_fused
554
+ - `optim_args`: None
555
+ - `adafactor`: False
556
+ - `group_by_length`: False
557
+ - `length_column_name`: length
558
+ - `ddp_find_unused_parameters`: None
559
+ - `ddp_bucket_cap_mb`: None
560
+ - `ddp_broadcast_buffers`: False
561
+ - `dataloader_pin_memory`: True
562
+ - `dataloader_persistent_workers`: False
563
+ - `skip_memory_metrics`: True
564
+ - `use_legacy_prediction_loop`: False
565
+ - `push_to_hub`: False
566
+ - `resume_from_checkpoint`: bge-small-hotpotwa-matryoshka
567
+ - `hub_model_id`: None
568
+ - `hub_strategy`: every_save
569
+ - `hub_private_repo`: False
570
+ - `hub_always_push`: False
571
+ - `gradient_checkpointing`: False
572
+ - `gradient_checkpointing_kwargs`: None
573
+ - `include_inputs_for_metrics`: False
574
+ - `eval_do_concat_batches`: True
575
+ - `fp16_backend`: auto
576
+ - `push_to_hub_model_id`: None
577
+ - `push_to_hub_organization`: None
578
+ - `mp_parameters`:
579
+ - `auto_find_batch_size`: False
580
+ - `full_determinism`: False
581
+ - `torchdynamo`: None
582
+ - `ray_scope`: last
583
+ - `ddp_timeout`: 1800
584
+ - `torch_compile`: False
585
+ - `torch_compile_backend`: None
586
+ - `torch_compile_mode`: None
587
+ - `dispatch_batches`: None
588
+ - `split_batches`: None
589
+ - `include_tokens_per_second`: False
590
+ - `include_num_input_tokens_seen`: False
591
+ - `neftune_noise_alpha`: None
592
+ - `optim_target_modules`: None
593
+ - `batch_eval_metrics`: False
594
+ - `batch_sampler`: no_duplicates
595
+ - `multi_dataset_batch_sampler`: proportional
596
+
597
+ </details>
598
+
599
+ ### Training Logs
600
+ | Epoch | Step | Training Loss | loss | dim_128_cosine_accuracy | dim_256_cosine_accuracy | dim_384_cosine_accuracy | dim_64_cosine_accuracy |
601
+ |:-------:|:----:|:-------------:|:-------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|
602
+ | 0.3366 | 50 | 19.5758 | 19.3933 | 0.9552 | 0.9663 | 0.9668 | 0.9359 |
603
+ | 0.6731 | 100 | 19.4573 | 19.0971 | 0.9571 | 0.9646 | 0.9653 | 0.9450 |
604
+ | 1.0097 | 150 | 19.1409 | 18.4070 | 0.9385 | 0.9434 | 0.9473 | 0.9307 |
605
+ | 1.3462 | 200 | 18.6431 | 17.3292 | 0.9126 | 0.9164 | 0.9184 | 0.9094 |
606
+ | 1.6828 | 250 | 18.2288 | 16.8751 | 0.9063 | 0.9071 | 0.9100 | 0.9023 |
607
+ | 2.0194 | 300 | 18.0425 | 16.6981 | 0.9020 | 0.9032 | 0.9045 | 0.8990 |
608
+ | 2.3559 | 350 | 17.9458 | 16.6155 | 0.9037 | 0.9013 | 0.9022 | 0.8984 |
609
+ | 2.6925 | 400 | 17.8525 | 16.5536 | 0.8978 | 0.8971 | 0.8974 | 0.8948 |
610
+ | 3.0290 | 450 | 17.7529 | 16.5136 | 0.8980 | 0.8956 | 0.8953 | 0.8951 |
611
+ | 3.3656 | 500 | 17.6709 | 16.4824 | 0.8932 | 0.8914 | 0.8928 | 0.8907 |
612
+ | 3.7021 | 550 | 17.5348 | 16.4632 | 0.8863 | 0.8858 | 0.8859 | 0.8849 |
613
+ | 4.0387 | 600 | 17.4198 | 16.4601 | 0.8852 | 0.8862 | 0.8859 | 0.8839 |
614
+ | 4.3753 | 650 | 17.3673 | 16.4405 | 0.8854 | 0.8864 | 0.8865 | 0.8842 |
615
+ | 4.7118 | 700 | 17.2603 | 16.4356 | 0.8835 | 0.8838 | 0.8838 | 0.8807 |
616
+ | 5.0484 | 750 | 17.1807 | 16.4443 | 0.8850 | 0.8864 | 0.8859 | 0.8838 |
617
+ | 5.3849 | 800 | 17.1629 | 16.4202 | 0.8848 | 0.8862 | 0.8867 | 0.8842 |
618
+ | 5.7215 | 850 | 17.0747 | 16.4162 | 0.8854 | 0.8875 | 0.8869 | 0.8837 |
619
+ | 6.0581 | 900 | 17.0161 | 16.4192 | 0.8852 | 0.8863 | 0.8856 | 0.8856 |
620
+ | 6.3946 | 950 | 17.0146 | 16.4033 | 0.8849 | 0.8854 | 0.8856 | 0.8844 |
621
+ | 6.7312 | 1000 | 16.9393 | 16.4053 | 0.8829 | 0.8839 | 0.8848 | 0.8835 |
622
+ | 7.0677 | 1050 | 16.899 | 16.4162 | 0.8826 | 0.8829 | 0.8833 | 0.8818 |
623
+ | 7.4043 | 1100 | 16.9112 | 16.4051 | 0.8829 | 0.8835 | 0.8833 | 0.8820 |
624
+ | 7.7408 | 1150 | 16.8508 | 16.4044 | 0.8822 | 0.8825 | 0.8830 | 0.8820 |
625
+ | 8.0774 | 1200 | 16.8104 | 16.4063 | 0.8816 | 0.8816 | 0.8814 | 0.8817 |
626
+ | 8.4140 | 1250 | 16.8212 | 16.4040 | 0.8835 | 0.8822 | 0.8822 | 0.8820 |
627
+ | 8.7505 | 1300 | 16.7743 | 16.3934 | 0.8822 | 0.8824 | 0.8817 | 0.8810 |
628
+ | 9.0871 | 1350 | 16.7383 | 16.3963 | 0.8810 | 0.8820 | 0.8807 | 0.8800 |
629
+ | 9.4236 | 1400 | 16.743 | 16.4067 | 0.8819 | 0.8822 | 0.8819 | 0.8798 |
630
+ | 9.7602 | 1450 | 16.7047 | 16.3959 | 0.8804 | 0.8810 | 0.8810 | 0.8797 |
631
+ | 10.0968 | 1500 | 16.6782 | 16.3986 | 0.8788 | 0.8791 | 0.8796 | 0.8784 |
632
+ | 10.4333 | 1550 | 16.6708 | 16.4016 | 0.8794 | 0.8792 | 0.8797 | 0.8791 |
633
+ | 10.7699 | 1600 | 16.6485 | 16.3963 | 0.8790 | 0.8801 | 0.8791 | 0.8781 |
634
+ | 11.1064 | 1650 | 16.6205 | 16.4012 | 0.8779 | 0.8787 | 0.8793 | 0.8771 |
635
+ | 11.4430 | 1700 | 16.6095 | 16.4131 | 0.8786 | 0.8790 | 0.8794 | 0.8791 |
636
+ | 11.7796 | 1750 | 16.5891 | 16.4070 | 0.8807 | 0.8805 | 0.8810 | 0.8801 |
637
+ | 12.1161 | 1800 | 16.5619 | 16.3963 | 0.8794 | 0.8800 | 0.8797 | 0.8780 |
638
+ | 12.4527 | 1850 | 16.5467 | 16.3991 | 0.8796 | 0.8806 | 0.8804 | 0.8790 |
639
+ | 12.7892 | 1900 | 16.5398 | 16.3970 | 0.8792 | 0.8798 | 0.8801 | 0.8788 |
640
+ | 13.1258 | 1950 | 16.5047 | 16.3964 | 0.8796 | 0.8804 | 0.8804 | 0.8788 |
641
+ | 13.4623 | 2000 | 16.4985 | 16.4025 | 0.8793 | 0.8798 | 0.8807 | 0.8790 |
642
+ | 13.7989 | 2050 | 16.4852 | 16.4107 | 0.8801 | 0.8810 | 0.8800 | 0.8793 |
643
+ | 14.1355 | 2100 | 16.4526 | 16.3929 | 0.8797 | 0.8801 | 0.8809 | 0.8779 |
644
+ | 14.4720 | 2150 | 16.4343 | 16.4075 | 0.8788 | 0.8791 | 0.8797 | 0.8774 |
645
+ | 14.8086 | 2200 | 16.4244 | 16.4027 | 0.8804 | 0.8819 | 0.8820 | 0.8809 |
646
+ | 15.1451 | 2250 | 16.3947 | 16.4102 | 0.8791 | 0.8792 | 0.8803 | 0.8773 |
647
+ | 15.4817 | 2300 | 16.3827 | 16.4042 | 0.8804 | 0.8813 | 0.8813 | 0.8781 |
648
+ | 15.8183 | 2350 | 16.3719 | 16.4003 | 0.8801 | 0.8818 | 0.8820 | 0.8791 |
649
+ | 16.1548 | 2400 | 16.3403 | 16.4132 | 0.8781 | 0.8791 | 0.8799 | 0.8767 |
650
+ | 16.4914 | 2450 | 16.3357 | 16.4149 | 0.8804 | 0.8809 | 0.8807 | 0.8792 |
651
+ | 16.8279 | 2500 | 16.3203 | 16.4081 | 0.8804 | 0.8814 | 0.8816 | 0.8791 |
652
+ | 17.1645 | 2550 | 16.2986 | 16.4139 | 0.8798 | 0.8800 | 0.8820 | 0.8791 |
653
+ | 17.5011 | 2600 | 16.2923 | 16.4062 | 0.8786 | 0.8792 | 0.8799 | 0.8768 |
654
+ | 17.8376 | 2650 | 16.2649 | 16.4106 | 0.8800 | 0.8807 | 0.8814 | 0.8787 |
655
+ | 18.1742 | 2700 | 16.2505 | 16.4188 | 0.8786 | 0.8793 | 0.8803 | 0.8771 |
656
+ | 18.5107 | 2750 | 16.226 | 16.4149 | 0.8771 | 0.8781 | 0.8780 | 0.8766 |
657
+ | 18.8473 | 2800 | 16.2106 | 16.4230 | 0.8780 | 0.8799 | 0.8791 | 0.8767 |
658
+ | 19.1838 | 2850 | 16.2052 | 16.4351 | 0.8770 | 0.8777 | 0.8785 | 0.8745 |
659
+ | 19.5204 | 2900 | 16.186 | 16.4331 | 0.8777 | 0.8793 | 0.8792 | 0.8762 |
660
+ | 19.8570 | 2950 | 16.1496 | 16.4377 | 0.8774 | 0.8781 | 0.8780 | 0.8771 |
661
+ | 20.1935 | 3000 | 16.151 | 16.4407 | 0.8766 | 0.8780 | 0.8780 | 0.8751 |
662
+ | 20.5301 | 3050 | 16.1081 | 16.4426 | 0.8759 | 0.8775 | 0.8774 | 0.8749 |
663
+ | 20.8666 | 3100 | 16.0864 | 16.4412 | 0.8774 | 0.8781 | 0.8787 | 0.8746 |
664
+ | 21.2032 | 3150 | 16.0934 | 16.4547 | 0.8768 | 0.8783 | 0.8794 | 0.8746 |
665
+ | 21.5398 | 3200 | 16.0382 | 16.4589 | 0.8742 | 0.8752 | 0.8766 | 0.8723 |
666
+ | 21.8763 | 3250 | 16.0279 | 16.4668 | 0.8752 | 0.8766 | 0.8773 | 0.8728 |
667
+ | 22.2129 | 3300 | 16.0327 | 16.4737 | 0.8742 | 0.8768 | 0.8773 | 0.8727 |
668
+ | 22.5494 | 3350 | 15.979 | 16.4686 | 0.8740 | 0.8771 | 0.8771 | 0.8722 |
669
+ | 22.8860 | 3400 | 15.9622 | 16.4736 | 0.8743 | 0.8760 | 0.8765 | 0.8721 |
670
+ | 23.2225 | 3450 | 15.9881 | 16.4802 | 0.8743 | 0.8757 | 0.8755 | 0.8723 |
671
+ | 23.5591 | 3500 | 15.9482 | 16.4821 | 0.8725 | 0.8761 | 0.8761 | 0.8710 |
672
+
673
+
674
+ ### Framework Versions
675
+ - Python: 3.10.10
676
+ - Sentence Transformers: 3.0.1
677
+ - Transformers: 4.41.2
678
+ - PyTorch: 2.1.2+cu121
679
+ - Accelerate: 0.33.0
680
+ - Datasets: 2.19.1
681
+ - Tokenizers: 0.19.1
682
+
683
+ ## Citation
684
+
685
+ ### BibTeX
686
+
687
+ #### Sentence Transformers
688
+ ```bibtex
689
+ @inproceedings{reimers-2019-sentence-bert,
690
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
691
+ author = "Reimers, Nils and Gurevych, Iryna",
692
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
693
+ month = "11",
694
+ year = "2019",
695
+ publisher = "Association for Computational Linguistics",
696
+ url = "https://arxiv.org/abs/1908.10084",
697
+ }
698
+ ```
699
+
700
+ #### MatryoshkaLoss
701
+ ```bibtex
702
+ @misc{kusupati2024matryoshka,
703
+ title={Matryoshka Representation Learning},
704
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
705
+ year={2024},
706
+ eprint={2205.13147},
707
+ archivePrefix={arXiv},
708
+ primaryClass={cs.LG}
709
+ }
710
+ ```
711
+
712
+ #### TripletLoss
713
+ ```bibtex
714
+ @misc{hermans2017defense,
715
+ title={In Defense of the Triplet Loss for Person Re-Identification},
716
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
717
+ year={2017},
718
+ eprint={1703.07737},
719
+ archivePrefix={arXiv},
720
+ primaryClass={cs.CV}
721
+ }
722
+ ```
723
+
724
+ <!--
725
+ ## Glossary
726
+
727
+ *Clearly define terms in order to be accessible across audiences.*
728
+ -->
729
+
730
+ <!--
731
+ ## Model Card Authors
732
+
733
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
734
+ -->
735
+
736
+ <!--
737
+ ## Model Card Contact
738
+
739
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
740
+ -->
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.41.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e51b8b03fef06f3cea81c56f2eab2bebcbafbd29a2a455743f589ccf5800af3c
3
+ size 133462128
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28967fd32631134d32ce5bda35f836a5ffb5285f4e47518202b6950dbdac6ebd
3
+ size 265864826
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b62d7bb13ea2729760bcc88a23393488e3b6b4df866bab7460cb4b11e902d5f0
3
+ size 14244
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:259c16c991125190bdd1f88033c0c211f38295a798ca9e641a34af168d1edbcf
3
+ size 1064
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe26c00a13b1f876cc56db695e59e808d1e214b61eac1c9292a292294b0541d3
3
+ size 5432
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-3500/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/README.md ADDED
@@ -0,0 +1,750 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en
3
+ datasets:
4
+ - sentence-transformers/hotpotqa
5
+ language:
6
+ - en
7
+ library_name: sentence-transformers
8
+ license: apache-2.0
9
+ metrics:
10
+ - cosine_accuracy
11
+ - dot_accuracy
12
+ - manhattan_accuracy
13
+ - euclidean_accuracy
14
+ - max_accuracy
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - generated_from_trainer
21
+ - dataset_size:76064
22
+ - loss:MatryoshkaLoss
23
+ - loss:TripletLoss
24
+ widget:
25
+ - source_sentence: When was the brewery founded by the family who resided in the Lemp
26
+ Mansion founded?
27
+ sentences:
28
+ - Latrobe Brewing Company Latrobe Brewing Company in Latrobe, Pennsylvania, founded
29
+ in 1839, was one of the largest breweries in the United States and the maker of
30
+ "Rolling Rock" beer (famous for its small green bottles). It was purchased by
31
+ Labatt Brewing Company in 1987, which in turn was purchased in 1995 by the Belgian
32
+ brewing conglomerate corporation Interbrew, which merged later into InBev in 2004.
33
+ - Lemp Mansion The Lemp Mansion (3322 DeMenil Place, St. Louis, Missouri) is a historical
34
+ house in Benton Park, St. Louis, Missouri. It is also the site of four suicides
35
+ by Lemp family members after the death of the son Frederick Lemp, whose William
36
+ J. Lemp Brewing Co. dominated the St. Louis beer market before Prohibition with
37
+ its Falstaff beer brand. The mansion is said to be haunted by members of the Lemp
38
+ family.
39
+ - 'Man of the House (song) "Man of the House" is a song co-written and recorded
40
+ by American country music artist Chuck Wicks. It was released in January 2009
41
+ as the third single from the album "Starting Now". The song reached #27 on the
42
+ "Billboard" Hot Country Songs chart. The song was written by Wicks and Michael
43
+ Mobley.'
44
+ - source_sentence: Who is the translator and researcher who served as a dean at Hartford
45
+ Junior College and translated her Belgian-French partner's 1968 work into English?
46
+ sentences:
47
+ - William L. Shirer William Lawrence Shirer (February 23, 1904 – December 28, 1993)
48
+ was an American journalist and war correspondent. He wrote "The Rise and Fall
49
+ of the Third Reich", a history of Nazi Germany that has been read by many and
50
+ cited in scholarly works for more than 50 years. Originally a foreign correspondent
51
+ for the "Chicago Tribune" and the International News Service, Shirer was the first
52
+ reporter hired by Edward R. Murrow for what would become a CBS radio team of journalists
53
+ known as "Murrow's Boys". He became known for his broadcasts from Berlin, from
54
+ the rise of the Nazi dictatorship through the first year of World War II (1940).
55
+ With Murrow, he organized the first broadcast world news roundup, a format still
56
+ followed by news broadcasts.
57
+ - 'The Abyss (Yourcenar novel) The Abyss (French: L''Œuvre au noir ) is a 1968 novel
58
+ by the Belgian-French writer Marguerite Yourcenar. Its narrative centers on the
59
+ life and death of Zeno, a physician, philosopher, scientist and alchemist born
60
+ in Bruges during the Renaissance era. The book was published in France in 1968
61
+ and was met with immediate popular interest as well as critical acclaim, obtaining
62
+ the Prix Femina with unanimous votes the year of its publication. The English
63
+ translation by Grace Frick has been published under the title "The Abyss" or alternatively
64
+ Zeno of Bruges. Belgian filmmaker André Delvaux adapted it into a film in 1988.'
65
+ - Pierre L. van den Berghe Pierre L. van den Berghe (born 1933) is professor emeritus
66
+ of sociology and anthropology at the University of Washington, where he has worked
67
+ since 1965. Born in the Belgian Congo to Belgian parents, and spending World War
68
+ II in occupied Belgium, he was an early witness to ethnic conflict and racism,
69
+ which eventually led him to become a leading authority on ethnic relations. He
70
+ has conducted field work in South Africa, Mexico, Guatemala, Iran, Lebanon, Nigeria,
71
+ Peru, and Israel. Early in his career, he lectured at the University of Natal
72
+ alongside Leo Kuper and Fatima Meer. A student of Talcott Parsons at Harvard (receiving
73
+ the Ph.D. in 1960), he nevertheless had little interest in structural functionalism
74
+ and was one of the first proponents of sociobiological approaches to social phenomena.
75
+ - source_sentence: Them Crooked Vultures and The Vines are both part of what music
76
+ genres?
77
+ sentences:
78
+ - Friendly Center Friendly Center is a large, open-air shopping center located in
79
+ northwestern Greensboro, North Carolina, near the intersection of Wendover Avenue
80
+ and Friendly Avenue. The shopping center opened in August 1957, and with its inward
81
+ orientation, Friendly Center could be classified as an outdoor lifestyle center.
82
+ Its anchor tenants include Belk, Macy's, and Sears. Other tenants include Barnes
83
+ & Noble, Old Navy, The Grande Theatre is a 16-screen multiplex cinema operated
84
+ by Regal Cinemas. It also contains Harris Teeter's flagship supermarket location
85
+ encompassing 72,000 square feet (6,700 m2) and Whole Foods Market. There are specialty
86
+ "foodie" stores tucked away in the back corner by Harris Teeter such as the Savory
87
+ Spice Shop and Midtown Olive Oil. It features a number of national retailers such
88
+ as Banana Republic, Victoria's Secret, The Limited, Bath & Body Works, Express,
89
+ The GAP, Eddie Bauer, Talbots, Birkenstock Feet First, Pier 1, and New York &
90
+ Company.
91
+ - Twin Wild Twin Wild is a British four-piece alternative rock band. Formed in 2012,
92
+ the band is made up of the collective creative energies of Richard Hutchison (vocals,
93
+ guitars), Imran Mair (drums), David Cuzner (guitars) and Edward Thomas (bass).
94
+ In 2014, the band self-released their track "Fears", which garnered over half
95
+ a million plays on Soundcloud and charted in Spotify’s Top 20 viral chart. Their
96
+ style of music has been compared to the likes of Foals, The Neighbourhood, and
97
+ Bastille. The band have been hailed by Edith Bowman as "The love child of Bastille
98
+ and Biffy Clyro".
99
+ - Them Crooked Vultures Them Crooked Vultures is a rock supergroup formed in Los
100
+ Angeles in 2009 by John Paul Jones (former member of Led Zeppelin) on bass and
101
+ keyboards, Dave Grohl (of Foo Fighters and formerly of Nirvana) on drums and backing
102
+ vocals, and Josh Homme (of Queens of the Stone Age, Eagles of Death Metal and
103
+ formerly of Kyuss) on guitar and vocals. The group also includes guitarist Alain
104
+ Johannes during live performances. The band began recording in February 2009,
105
+ and performed their first gig on August 9, 2009, in Chicago, followed by a European
106
+ debut on August 19. On October 1 the group embarked on a worldwide tour titled
107
+ "Deserve the Future" with dates going into 2010. The band's first single "New
108
+ Fang" was released in October 2009, followed by the group's self-titled debut
109
+ album the following month, debuting at number 12 on the "Billboard" 200. The group
110
+ won the 2011 Grammy Award for Best Hard Rock Performance for "New Fang".
111
+ - source_sentence: What type of collection does Nådens år and Agnetha Fältskog have
112
+ in common?
113
+ sentences:
114
+ - Gardiner Island (Nunavut) Gardiner Island is one of the many uninhabited Canadian
115
+ arctic islands in Qikiqtaaluk Region, Nunavut. It is a Baffin Island offshore
116
+ island located in Frobisher Bay south of the capital city of Iqaluit.
117
+ - Nådens år Nådens år (The Year of Grace) is the third studio album by the Swedish
118
+ rock artist Ulf Lundell. It was released in April 1978 on EMI and Parlophone.
119
+ It was recorded in EMI Studio, Stockholm, and produced by Kjell Andersson and
120
+ Lundell. It includes "Snön faller och vi med den" ("The snow is falling and we
121
+ are too"), one of Lundell's more famous songs. Agnetha Fältskog is involved in
122
+ the song. The cover picture shows Lundell sitting on a rock next to a dog and
123
+ was taken in Åre in 1977. "Nådens år" achieved Gold status in Sweden.
124
+ - Åsa Elzén Åsa Elzén is an artist whose work is informed by feminist theory, intersectionality
125
+ and post-colonialism. Elzén was born in Sweden in 1972 and currently lives and
126
+ works in Berlin.
127
+ - source_sentence: Red Velvet is a 2012 play by Lolita Chakrabarti, dealing with the
128
+ biography of a 19th century actor born in which year ?
129
+ sentences:
130
+ - Herbert Campbell Herbert Campbell (22 December 1844 – 19 July 1904) born Herbert
131
+ Edward Story was an English comedian and actor who appeared in music hall, Victorian
132
+ burlesques and musical comedies during the Victorian era. He was famous for starring,
133
+ for forty years, in the Theatre Royal, Drury Lane's annual Christmas pantomimes,
134
+ predominantly as a dame.
135
+ - Leptinella Leptinella is a genus of alpine flowering plant in the Asteraceae family,
136
+ comprising 33 species, distributed in New Guinea, Australia, New Zealand, South
137
+ Africa, and South America. Many of the species are endemic to New Zealand.
138
+ - Red Velvet (play) Red Velvet is a 2012 play by Lolita Chakrabarti, dealing with
139
+ the biography of the 19th century actor Ira Aldridge and his taking the role of
140
+ "Othello". It premiered at the Tricycle Theatre (directed by its new artistic
141
+ director Indhu Rubasingham) from 11 October to 24 November 2012, with Aldridge
142
+ played by Adrian Lester.
143
+ model-index:
144
+ - name: BGE-base-en-v1.5-Hotpotqa
145
+ results:
146
+ - task:
147
+ type: triplet
148
+ name: Triplet
149
+ dataset:
150
+ name: dim 384
151
+ type: dim_384
152
+ metrics:
153
+ - type: cosine_accuracy
154
+ value: 0.8698532891623284
155
+ name: Cosine Accuracy
156
+ - type: dot_accuracy
157
+ value: 0.13014671083767157
158
+ name: Dot Accuracy
159
+ - type: manhattan_accuracy
160
+ value: 0.8737576904874585
161
+ name: Manhattan Accuracy
162
+ - type: euclidean_accuracy
163
+ value: 0.8698532891623284
164
+ name: Euclidean Accuracy
165
+ - type: max_accuracy
166
+ value: 0.8737576904874585
167
+ name: Max Accuracy
168
+ - task:
169
+ type: triplet
170
+ name: Triplet
171
+ dataset:
172
+ name: dim 256
173
+ type: dim_256
174
+ metrics:
175
+ - type: cosine_accuracy
176
+ value: 0.86819687647894
177
+ name: Cosine Accuracy
178
+ - type: dot_accuracy
179
+ value: 0.1319214387127307
180
+ name: Dot Accuracy
181
+ - type: manhattan_accuracy
182
+ value: 0.8762423095125415
183
+ name: Manhattan Accuracy
184
+ - type: euclidean_accuracy
185
+ value: 0.8680785612872692
186
+ name: Euclidean Accuracy
187
+ - type: max_accuracy
188
+ value: 0.8762423095125415
189
+ name: Max Accuracy
190
+ - task:
191
+ type: triplet
192
+ name: Triplet
193
+ dataset:
194
+ name: dim 128
195
+ type: dim_128
196
+ metrics:
197
+ - type: cosine_accuracy
198
+ value: 0.8663038334122102
199
+ name: Cosine Accuracy
200
+ - type: dot_accuracy
201
+ value: 0.1386654046379555
202
+ name: Dot Accuracy
203
+ - type: manhattan_accuracy
204
+ value: 0.8742309512541411
205
+ name: Manhattan Accuracy
206
+ - type: euclidean_accuracy
207
+ value: 0.865712257453857
208
+ name: Euclidean Accuracy
209
+ - type: max_accuracy
210
+ value: 0.8742309512541411
211
+ name: Max Accuracy
212
+ - task:
213
+ type: triplet
214
+ name: Triplet
215
+ dataset:
216
+ name: dim 64
217
+ type: dim_64
218
+ metrics:
219
+ - type: cosine_accuracy
220
+ value: 0.8634642688121155
221
+ name: Cosine Accuracy
222
+ - type: dot_accuracy
223
+ value: 0.1508518693800284
224
+ name: Dot Accuracy
225
+ - type: manhattan_accuracy
226
+ value: 0.8728111689540937
227
+ name: Manhattan Accuracy
228
+ - type: euclidean_accuracy
229
+ value: 0.8637008991954567
230
+ name: Euclidean Accuracy
231
+ - type: max_accuracy
232
+ value: 0.8728111689540937
233
+ name: Max Accuracy
234
+ ---
235
+
236
+ # BGE-base-en-v1.5-Hotpotqa
237
+
238
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) on the [sentence-transformers/hotpotqa](https://huggingface.co/datasets/sentence-transformers/hotpotqa) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
239
+
240
+ ## Model Details
241
+
242
+ ### Model Description
243
+ - **Model Type:** Sentence Transformer
244
+ - **Base model:** [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) <!-- at revision 2275a7bdee235e9b4f01fa73aa60d3311983cfea -->
245
+ - **Maximum Sequence Length:** 512 tokens
246
+ - **Output Dimensionality:** 384 tokens
247
+ - **Similarity Function:** Cosine Similarity
248
+ - **Training Dataset:**
249
+ - [sentence-transformers/hotpotqa](https://huggingface.co/datasets/sentence-transformers/hotpotqa)
250
+ - **Language:** en
251
+ - **License:** apache-2.0
252
+
253
+ ### Model Sources
254
+
255
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
256
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
257
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
258
+
259
+ ### Full Model Architecture
260
+
261
+ ```
262
+ SentenceTransformer(
263
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
264
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
265
+ (2): Normalize()
266
+ )
267
+ ```
268
+
269
+ ## Usage
270
+
271
+ ### Direct Usage (Sentence Transformers)
272
+
273
+ First install the Sentence Transformers library:
274
+
275
+ ```bash
276
+ pip install -U sentence-transformers
277
+ ```
278
+
279
+ Then you can load this model and run inference.
280
+ ```python
281
+ from sentence_transformers import SentenceTransformer
282
+
283
+ # Download from the 🤗 Hub
284
+ model = SentenceTransformer("sentence_transformers_model_id")
285
+ # Run inference
286
+ sentences = [
287
+ 'Red Velvet is a 2012 play by Lolita Chakrabarti, dealing with the biography of a 19th century actor born in which year ?',
288
+ 'Red Velvet (play) Red Velvet is a 2012 play by Lolita Chakrabarti, dealing with the biography of the 19th century actor Ira Aldridge and his taking the role of "Othello". It premiered at the Tricycle Theatre (directed by its new artistic director Indhu Rubasingham) from 11 October to 24 November 2012, with Aldridge played by Adrian Lester.',
289
+ "Herbert Campbell Herbert Campbell (22 December 1844 – 19 July 1904) born Herbert Edward Story was an English comedian and actor who appeared in music hall, Victorian burlesques and musical comedies during the Victorian era. He was famous for starring, for forty years, in the Theatre Royal, Drury Lane's annual Christmas pantomimes, predominantly as a dame.",
290
+ ]
291
+ embeddings = model.encode(sentences)
292
+ print(embeddings.shape)
293
+ # [3, 384]
294
+
295
+ # Get the similarity scores for the embeddings
296
+ similarities = model.similarity(embeddings, embeddings)
297
+ print(similarities.shape)
298
+ # [3, 3]
299
+ ```
300
+
301
+ <!--
302
+ ### Direct Usage (Transformers)
303
+
304
+ <details><summary>Click to see the direct usage in Transformers</summary>
305
+
306
+ </details>
307
+ -->
308
+
309
+ <!--
310
+ ### Downstream Usage (Sentence Transformers)
311
+
312
+ You can finetune this model on your own dataset.
313
+
314
+ <details><summary>Click to expand</summary>
315
+
316
+ </details>
317
+ -->
318
+
319
+ <!--
320
+ ### Out-of-Scope Use
321
+
322
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
323
+ -->
324
+
325
+ ## Evaluation
326
+
327
+ ### Metrics
328
+
329
+ #### Triplet
330
+ * Dataset: `dim_384`
331
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
332
+
333
+ | Metric | Value |
334
+ |:--------------------|:-----------|
335
+ | **cosine_accuracy** | **0.8699** |
336
+ | dot_accuracy | 0.1301 |
337
+ | manhattan_accuracy | 0.8738 |
338
+ | euclidean_accuracy | 0.8699 |
339
+ | max_accuracy | 0.8738 |
340
+
341
+ #### Triplet
342
+ * Dataset: `dim_256`
343
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
344
+
345
+ | Metric | Value |
346
+ |:--------------------|:-----------|
347
+ | **cosine_accuracy** | **0.8682** |
348
+ | dot_accuracy | 0.1319 |
349
+ | manhattan_accuracy | 0.8762 |
350
+ | euclidean_accuracy | 0.8681 |
351
+ | max_accuracy | 0.8762 |
352
+
353
+ #### Triplet
354
+ * Dataset: `dim_128`
355
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
356
+
357
+ | Metric | Value |
358
+ |:--------------------|:-----------|
359
+ | **cosine_accuracy** | **0.8663** |
360
+ | dot_accuracy | 0.1387 |
361
+ | manhattan_accuracy | 0.8742 |
362
+ | euclidean_accuracy | 0.8657 |
363
+ | max_accuracy | 0.8742 |
364
+
365
+ #### Triplet
366
+ * Dataset: `dim_64`
367
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
368
+
369
+ | Metric | Value |
370
+ |:--------------------|:-----------|
371
+ | **cosine_accuracy** | **0.8635** |
372
+ | dot_accuracy | 0.1509 |
373
+ | manhattan_accuracy | 0.8728 |
374
+ | euclidean_accuracy | 0.8637 |
375
+ | max_accuracy | 0.8728 |
376
+
377
+ <!--
378
+ ## Bias, Risks and Limitations
379
+
380
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
381
+ -->
382
+
383
+ <!--
384
+ ### Recommendations
385
+
386
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
387
+ -->
388
+
389
+ ## Training Details
390
+
391
+ ### Training Dataset
392
+
393
+ #### sentence-transformers/hotpotqa
394
+
395
+ * Dataset: [sentence-transformers/hotpotqa](https://huggingface.co/datasets/sentence-transformers/hotpotqa) at [f07d3cd](https://huggingface.co/datasets/sentence-transformers/hotpotqa/tree/f07d3cd2d290ea2e83ed35e33d67d6a4658b8786)
396
+ * Size: 76,064 training samples
397
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
398
+ * Approximate statistics based on the first 1000 samples:
399
+ | | anchor | positive | negative |
400
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
401
+ | type | string | string | string |
402
+ | details | <ul><li>min: 8 tokens</li><li>mean: 24.08 tokens</li><li>max: 95 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 100.12 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 88.02 tokens</li><li>max: 512 tokens</li></ul> |
403
+ * Samples:
404
+ | anchor | positive | negative |
405
+ |:-------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
406
+ | <code>What nationality was the player named MVP in 2017 World Baseball Classic – Pool C ?</code> | <code>2017 World Baseball Classic – Pool C Pool C of the First Round of the 2017 World Baseball Classic was held at Marlins Park, Miami, Florida, United States, from March 9 to 12, 2017, between Canada, Colombia, the Dominican Republic, and the United States. Pool C was a round-robin tournament. Each team played the other three teams once, with the top two teams – the Dominican Republic and the United States – advancing to Pool F, one of two second-round pools. Manny Machado of the Dominican Republic was named MVP for the first-round Pool C bracket of the WBC, after batting .357.</code> | <code>2017 World Baseball Classic – Qualifier 2 Qualifier 2 of the Qualifying Round of the 2017 World Baseball Classic was held at Estadio B'Air, Mexicali, Mexico from March 17 to 20, 2016.</code> |
407
+ | <code>Karl Kraepelin specialized in the study of what predatory arachnids?</code> | <code>Karl Kraepelin Karl Matthias Friedrich Magnus Kraepelin (14 December 1848 Neustrelitz – 28 June 1915 Hamburg), was a German naturalist who specialised in the study of scorpions, centipedes, spiders and solfugids, and was noted for his monograph ""Scorpiones und Pedipalpi"" (Berlin) in 1899, which was an exhaustive survey of the taxonomy of the Order Scorpiones. From 1889–1914 he was Director of the "Naturhistorisches Museum Hamburg ", which was destroyed during World War II, and worked on myriapods from 1901–1916.</code> | <code>Teuthology Teuthology (from Greek "τεῦθος" , "cuttlefish, squid", and -λογία , "-logia") is the study of cephalopods.</code> |
408
+ | <code>Who directed the 1990 American crime film in which Vito Pick me played a bit part?</code> | <code>Vito Picone Vito Picone (born March 20, 1941) is the lead singer of The Elegants, and along with Jimmy Mochella is a remaining original member. He has also played bit parts in "Goodfellas", "Analyze This", and "The Sopranos".</code> | <code>The Rookie (1990 film) The Rookie is a 1990 American buddy cop film directed by Clint Eastwood and produced by Howard G. Kazanjian, Steven Siebert and David Valdes. It was written from a screenplay conceived by Boaz Yakin and Scott Spiegel. The film stars Charlie Sheen, Clint Eastwood, Raúl Juliá, Sônia Braga, Lara Flynn Boyle, and Tom Skerritt. Eastwood plays a veteran police officer teamed up with a younger detective played by Sheen ("the rookie"), whose intent is to take down a German crime lord in downtown Los Angeles following months of investigation into an exotic car theft ring.</code> |
409
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
410
+ ```json
411
+ {
412
+ "loss": "TripletLoss",
413
+ "matryoshka_dims": [
414
+ 384,
415
+ 256,
416
+ 128,
417
+ 64
418
+ ],
419
+ "matryoshka_weights": [
420
+ 1,
421
+ 1,
422
+ 1,
423
+ 1
424
+ ],
425
+ "n_dims_per_step": -1
426
+ }
427
+ ```
428
+
429
+ ### Evaluation Dataset
430
+
431
+ #### sentence-transformers/hotpotqa
432
+
433
+ * Dataset: [sentence-transformers/hotpotqa](https://huggingface.co/datasets/sentence-transformers/hotpotqa) at [f07d3cd](https://huggingface.co/datasets/sentence-transformers/hotpotqa/tree/f07d3cd2d290ea2e83ed35e33d67d6a4658b8786)
434
+ * Size: 8,452 evaluation samples
435
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
436
+ * Approximate statistics based on the first 1000 samples:
437
+ | | anchor | positive | negative |
438
+ |:--------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
439
+ | type | string | string | string |
440
+ | details | <ul><li>min: 10 tokens</li><li>mean: 24.53 tokens</li><li>max: 114 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 103.87 tokens</li><li>max: 407 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 88.32 tokens</li><li>max: 356 tokens</li></ul> |
441
+ * Samples:
442
+ | anchor | positive | negative |
443
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
444
+ | <code>Which actress, known for her role as Harper Munroe on the MTV comedy series "Happyland", starred alongside Laura Marano, Parker Mack, Michelle Clunie and Kathleen Wilhoite in the film A Sort of Homecoming?</code> | <code>A Sort of Homecoming (film) A Sort of Homecoming is an American drama directed by Maria Burton, her fifth feature film. The films stars Katherine McNamara, Laura Marano, Parker Mack, Michelle Clunie and Kathleen Wilhoite. The film premiered March 14, 2015 at the Omaha Film Festival.</code> | <code>Nellie Bellflower Nellie Bellflower (born May 1, 1946 in Phoenix, Arizona) is an American actress and voice artist who provided the voice of Princess Ariel in the Ruby-Spears animated television series "Thundarr the Barbarian". She has also been in "The Last Unicorn" (voice), Rankin/Bass "The Return of the King", "Americathon", the miniseries "East of Eden", and guest roles on various TV shows such as "Barnaby Jones", "Barney Miller", "Starsky and Hutch", and "Happy Days" as Fonzie's ex-fiancée Maureen Johnson, a.k.a. "The Lone Stripper", in the Season 2 episode of the series titled "Fonzie's Getting Married" (episode #13). Nellie has been involved in movie production with three projects: "The Girl in Melanie Klein" (2008), "Miss Pettigrew Lives for a Day" (2008) and "Finding Neverland" (2004), for which she was nominated for an Academy Award as Producer for Best Picture. She is married to Michael Mislove.</code> |
445
+ | <code>Between Pizza Fusion and Pizzeria Venti, which restaurant emphasizes organic ingredients and green building methods?</code> | <code>Pizza Fusion Pizza Fusion is a Deerfield Beach, Florida-based pizza restaurant chain. Using mostly organic ingredients and emphasizing green building methods, the restaurants operate under the tagline Saving the Earth, One Pizza at a Time.</code> | <code>Pizza Schmizza Pizza Schmizza is an American pizza chain with 23 locations throughout the Portland, Oregon area, and two in southern Oregon. Pizza Schmizza, primarily selling thin crust pizza by-the-slice.</code> |
446
+ | <code>What company distributed the stop motion spin-off special "The Year Without a Santa Claus," which aired on December 10, 1974?</code> | <code>A Miser Brothers' Christmas A Miser Brothers' Christmas is a stop motion spin-off special based on some of the characters from the 1974 Rankin-Bass special "The Year Without a Santa Claus". Distributed by Warner Bros. Animation under their Warner Premiere label (the rights holders of the post-1974 Rankin-Bass library) and Toronto-based Cuppa Coffee Studios, the one-hour special premiered on ABC Family on Saturday, December 13, 2008, during the network's annual The 25 Days of Christmas programming. Mickey Rooney and George S. Irving reprised their respective roles as Santa Claus and Heat Miser at ages 88 and 86. Snow Miser, originally portrayed by Dick Shawn who died in 1987, was voiced by Juan Chioran, while Mrs. Claus, voiced by Shirley Booth in the original, was portrayed by Catherine Disher (because Booth had died in 1992). The movie aimed to emulate the Rankin/Bass animation style. This is the last Christmas special to feature Mickey Rooney as Santa Claus, as he died in 2014, as well as the last time George Irving voiced Heat Miser, as he died in 2016.</code> | <code>Holidaze: The Christmas That Almost Didn't Happen Holidaze: The Christmas That Almost Didn't Happen is an American stop-motion animated Christmas television special directed by David H. Brooks, that originally aired in 2006 and produced by BixPix Entertainment, Once Upon a Frog and Madison Street Entertainment. The show's plot has Rusty Reindeer (Fred Savage) the brother of Rudolph the Red Nosed Reindeer joining a support group for depressed holiday icons, and he and the other characters search for the meaning of Christmas and help a young boy (Dylan and Cole Sprouse) to get on Santa's nice list. Rusty's cohorts include Candie, the Easter Bunny (Gladys Knight); Mr. C, the grouchy cherub (Paul Rodriguez); Albert, the Thanksgiving Turkey (Harland Williams); And Trick and Treat (Brenda Song and Emily Osment) the teenage Halloween Ghosts.</code> |
447
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
448
+ ```json
449
+ {
450
+ "loss": "TripletLoss",
451
+ "matryoshka_dims": [
452
+ 384,
453
+ 256,
454
+ 128,
455
+ 64
456
+ ],
457
+ "matryoshka_weights": [
458
+ 1,
459
+ 1,
460
+ 1,
461
+ 1
462
+ ],
463
+ "n_dims_per_step": -1
464
+ }
465
+ ```
466
+
467
+ ### Training Hyperparameters
468
+ #### Non-Default Hyperparameters
469
+
470
+ - `eval_strategy`: steps
471
+ - `per_device_train_batch_size`: 32
472
+ - `per_device_eval_batch_size`: 32
473
+ - `gradient_accumulation_steps`: 16
474
+ - `learning_rate`: 2e-05
475
+ - `num_train_epochs`: 50
476
+ - `lr_scheduler_type`: cosine
477
+ - `warmup_ratio`: 0.1
478
+ - `bf16`: True
479
+ - `tf32`: True
480
+ - `load_best_model_at_end`: True
481
+ - `optim`: adamw_torch_fused
482
+ - `resume_from_checkpoint`: bge-small-hotpotwa-matryoshka
483
+ - `batch_sampler`: no_duplicates
484
+
485
+ #### All Hyperparameters
486
+ <details><summary>Click to expand</summary>
487
+
488
+ - `overwrite_output_dir`: False
489
+ - `do_predict`: False
490
+ - `eval_strategy`: steps
491
+ - `prediction_loss_only`: True
492
+ - `per_device_train_batch_size`: 32
493
+ - `per_device_eval_batch_size`: 32
494
+ - `per_gpu_train_batch_size`: None
495
+ - `per_gpu_eval_batch_size`: None
496
+ - `gradient_accumulation_steps`: 16
497
+ - `eval_accumulation_steps`: None
498
+ - `learning_rate`: 2e-05
499
+ - `weight_decay`: 0.0
500
+ - `adam_beta1`: 0.9
501
+ - `adam_beta2`: 0.999
502
+ - `adam_epsilon`: 1e-08
503
+ - `max_grad_norm`: 1.0
504
+ - `num_train_epochs`: 50
505
+ - `max_steps`: -1
506
+ - `lr_scheduler_type`: cosine
507
+ - `lr_scheduler_kwargs`: {}
508
+ - `warmup_ratio`: 0.1
509
+ - `warmup_steps`: 0
510
+ - `log_level`: passive
511
+ - `log_level_replica`: warning
512
+ - `log_on_each_node`: True
513
+ - `logging_nan_inf_filter`: True
514
+ - `save_safetensors`: True
515
+ - `save_on_each_node`: False
516
+ - `save_only_model`: False
517
+ - `restore_callback_states_from_checkpoint`: False
518
+ - `no_cuda`: False
519
+ - `use_cpu`: False
520
+ - `use_mps_device`: False
521
+ - `seed`: 42
522
+ - `data_seed`: None
523
+ - `jit_mode_eval`: False
524
+ - `use_ipex`: False
525
+ - `bf16`: True
526
+ - `fp16`: False
527
+ - `fp16_opt_level`: O1
528
+ - `half_precision_backend`: auto
529
+ - `bf16_full_eval`: False
530
+ - `fp16_full_eval`: False
531
+ - `tf32`: True
532
+ - `local_rank`: 0
533
+ - `ddp_backend`: None
534
+ - `tpu_num_cores`: None
535
+ - `tpu_metrics_debug`: False
536
+ - `debug`: []
537
+ - `dataloader_drop_last`: False
538
+ - `dataloader_num_workers`: 0
539
+ - `dataloader_prefetch_factor`: None
540
+ - `past_index`: -1
541
+ - `disable_tqdm`: False
542
+ - `remove_unused_columns`: True
543
+ - `label_names`: None
544
+ - `load_best_model_at_end`: True
545
+ - `ignore_data_skip`: False
546
+ - `fsdp`: []
547
+ - `fsdp_min_num_params`: 0
548
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
549
+ - `fsdp_transformer_layer_cls_to_wrap`: None
550
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
551
+ - `deepspeed`: None
552
+ - `label_smoothing_factor`: 0.0
553
+ - `optim`: adamw_torch_fused
554
+ - `optim_args`: None
555
+ - `adafactor`: False
556
+ - `group_by_length`: False
557
+ - `length_column_name`: length
558
+ - `ddp_find_unused_parameters`: None
559
+ - `ddp_bucket_cap_mb`: None
560
+ - `ddp_broadcast_buffers`: False
561
+ - `dataloader_pin_memory`: True
562
+ - `dataloader_persistent_workers`: False
563
+ - `skip_memory_metrics`: True
564
+ - `use_legacy_prediction_loop`: False
565
+ - `push_to_hub`: False
566
+ - `resume_from_checkpoint`: bge-small-hotpotwa-matryoshka
567
+ - `hub_model_id`: None
568
+ - `hub_strategy`: every_save
569
+ - `hub_private_repo`: False
570
+ - `hub_always_push`: False
571
+ - `gradient_checkpointing`: False
572
+ - `gradient_checkpointing_kwargs`: None
573
+ - `include_inputs_for_metrics`: False
574
+ - `eval_do_concat_batches`: True
575
+ - `fp16_backend`: auto
576
+ - `push_to_hub_model_id`: None
577
+ - `push_to_hub_organization`: None
578
+ - `mp_parameters`:
579
+ - `auto_find_batch_size`: False
580
+ - `full_determinism`: False
581
+ - `torchdynamo`: None
582
+ - `ray_scope`: last
583
+ - `ddp_timeout`: 1800
584
+ - `torch_compile`: False
585
+ - `torch_compile_backend`: None
586
+ - `torch_compile_mode`: None
587
+ - `dispatch_batches`: None
588
+ - `split_batches`: None
589
+ - `include_tokens_per_second`: False
590
+ - `include_num_input_tokens_seen`: False
591
+ - `neftune_noise_alpha`: None
592
+ - `optim_target_modules`: None
593
+ - `batch_eval_metrics`: False
594
+ - `batch_sampler`: no_duplicates
595
+ - `multi_dataset_batch_sampler`: proportional
596
+
597
+ </details>
598
+
599
+ ### Training Logs
600
+ | Epoch | Step | Training Loss | loss | dim_128_cosine_accuracy | dim_256_cosine_accuracy | dim_384_cosine_accuracy | dim_64_cosine_accuracy |
601
+ |:-------:|:----:|:-------------:|:-------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|
602
+ | 0.3366 | 50 | 19.5758 | 19.3933 | 0.9552 | 0.9663 | 0.9668 | 0.9359 |
603
+ | 0.6731 | 100 | 19.4573 | 19.0971 | 0.9571 | 0.9646 | 0.9653 | 0.9450 |
604
+ | 1.0097 | 150 | 19.1409 | 18.4070 | 0.9385 | 0.9434 | 0.9473 | 0.9307 |
605
+ | 1.3462 | 200 | 18.6431 | 17.3292 | 0.9126 | 0.9164 | 0.9184 | 0.9094 |
606
+ | 1.6828 | 250 | 18.2288 | 16.8751 | 0.9063 | 0.9071 | 0.9100 | 0.9023 |
607
+ | 2.0194 | 300 | 18.0425 | 16.6981 | 0.9020 | 0.9032 | 0.9045 | 0.8990 |
608
+ | 2.3559 | 350 | 17.9458 | 16.6155 | 0.9037 | 0.9013 | 0.9022 | 0.8984 |
609
+ | 2.6925 | 400 | 17.8525 | 16.5536 | 0.8978 | 0.8971 | 0.8974 | 0.8948 |
610
+ | 3.0290 | 450 | 17.7529 | 16.5136 | 0.8980 | 0.8956 | 0.8953 | 0.8951 |
611
+ | 3.3656 | 500 | 17.6709 | 16.4824 | 0.8932 | 0.8914 | 0.8928 | 0.8907 |
612
+ | 3.7021 | 550 | 17.5348 | 16.4632 | 0.8863 | 0.8858 | 0.8859 | 0.8849 |
613
+ | 4.0387 | 600 | 17.4198 | 16.4601 | 0.8852 | 0.8862 | 0.8859 | 0.8839 |
614
+ | 4.3753 | 650 | 17.3673 | 16.4405 | 0.8854 | 0.8864 | 0.8865 | 0.8842 |
615
+ | 4.7118 | 700 | 17.2603 | 16.4356 | 0.8835 | 0.8838 | 0.8838 | 0.8807 |
616
+ | 5.0484 | 750 | 17.1807 | 16.4443 | 0.8850 | 0.8864 | 0.8859 | 0.8838 |
617
+ | 5.3849 | 800 | 17.1629 | 16.4202 | 0.8848 | 0.8862 | 0.8867 | 0.8842 |
618
+ | 5.7215 | 850 | 17.0747 | 16.4162 | 0.8854 | 0.8875 | 0.8869 | 0.8837 |
619
+ | 6.0581 | 900 | 17.0161 | 16.4192 | 0.8852 | 0.8863 | 0.8856 | 0.8856 |
620
+ | 6.3946 | 950 | 17.0146 | 16.4033 | 0.8849 | 0.8854 | 0.8856 | 0.8844 |
621
+ | 6.7312 | 1000 | 16.9393 | 16.4053 | 0.8829 | 0.8839 | 0.8848 | 0.8835 |
622
+ | 7.0677 | 1050 | 16.899 | 16.4162 | 0.8826 | 0.8829 | 0.8833 | 0.8818 |
623
+ | 7.4043 | 1100 | 16.9112 | 16.4051 | 0.8829 | 0.8835 | 0.8833 | 0.8820 |
624
+ | 7.7408 | 1150 | 16.8508 | 16.4044 | 0.8822 | 0.8825 | 0.8830 | 0.8820 |
625
+ | 8.0774 | 1200 | 16.8104 | 16.4063 | 0.8816 | 0.8816 | 0.8814 | 0.8817 |
626
+ | 8.4140 | 1250 | 16.8212 | 16.4040 | 0.8835 | 0.8822 | 0.8822 | 0.8820 |
627
+ | 8.7505 | 1300 | 16.7743 | 16.3934 | 0.8822 | 0.8824 | 0.8817 | 0.8810 |
628
+ | 9.0871 | 1350 | 16.7383 | 16.3963 | 0.8810 | 0.8820 | 0.8807 | 0.8800 |
629
+ | 9.4236 | 1400 | 16.743 | 16.4067 | 0.8819 | 0.8822 | 0.8819 | 0.8798 |
630
+ | 9.7602 | 1450 | 16.7047 | 16.3959 | 0.8804 | 0.8810 | 0.8810 | 0.8797 |
631
+ | 10.0968 | 1500 | 16.6782 | 16.3986 | 0.8788 | 0.8791 | 0.8796 | 0.8784 |
632
+ | 10.4333 | 1550 | 16.6708 | 16.4016 | 0.8794 | 0.8792 | 0.8797 | 0.8791 |
633
+ | 10.7699 | 1600 | 16.6485 | 16.3963 | 0.8790 | 0.8801 | 0.8791 | 0.8781 |
634
+ | 11.1064 | 1650 | 16.6205 | 16.4012 | 0.8779 | 0.8787 | 0.8793 | 0.8771 |
635
+ | 11.4430 | 1700 | 16.6095 | 16.4131 | 0.8786 | 0.8790 | 0.8794 | 0.8791 |
636
+ | 11.7796 | 1750 | 16.5891 | 16.4070 | 0.8807 | 0.8805 | 0.8810 | 0.8801 |
637
+ | 12.1161 | 1800 | 16.5619 | 16.3963 | 0.8794 | 0.8800 | 0.8797 | 0.8780 |
638
+ | 12.4527 | 1850 | 16.5467 | 16.3991 | 0.8796 | 0.8806 | 0.8804 | 0.8790 |
639
+ | 12.7892 | 1900 | 16.5398 | 16.3970 | 0.8792 | 0.8798 | 0.8801 | 0.8788 |
640
+ | 13.1258 | 1950 | 16.5047 | 16.3964 | 0.8796 | 0.8804 | 0.8804 | 0.8788 |
641
+ | 13.4623 | 2000 | 16.4985 | 16.4025 | 0.8793 | 0.8798 | 0.8807 | 0.8790 |
642
+ | 13.7989 | 2050 | 16.4852 | 16.4107 | 0.8801 | 0.8810 | 0.8800 | 0.8793 |
643
+ | 14.1355 | 2100 | 16.4526 | 16.3929 | 0.8797 | 0.8801 | 0.8809 | 0.8779 |
644
+ | 14.4720 | 2150 | 16.4343 | 16.4075 | 0.8788 | 0.8791 | 0.8797 | 0.8774 |
645
+ | 14.8086 | 2200 | 16.4244 | 16.4027 | 0.8804 | 0.8819 | 0.8820 | 0.8809 |
646
+ | 15.1451 | 2250 | 16.3947 | 16.4102 | 0.8791 | 0.8792 | 0.8803 | 0.8773 |
647
+ | 15.4817 | 2300 | 16.3827 | 16.4042 | 0.8804 | 0.8813 | 0.8813 | 0.8781 |
648
+ | 15.8183 | 2350 | 16.3719 | 16.4003 | 0.8801 | 0.8818 | 0.8820 | 0.8791 |
649
+ | 16.1548 | 2400 | 16.3403 | 16.4132 | 0.8781 | 0.8791 | 0.8799 | 0.8767 |
650
+ | 16.4914 | 2450 | 16.3357 | 16.4149 | 0.8804 | 0.8809 | 0.8807 | 0.8792 |
651
+ | 16.8279 | 2500 | 16.3203 | 16.4081 | 0.8804 | 0.8814 | 0.8816 | 0.8791 |
652
+ | 17.1645 | 2550 | 16.2986 | 16.4139 | 0.8798 | 0.8800 | 0.8820 | 0.8791 |
653
+ | 17.5011 | 2600 | 16.2923 | 16.4062 | 0.8786 | 0.8792 | 0.8799 | 0.8768 |
654
+ | 17.8376 | 2650 | 16.2649 | 16.4106 | 0.8800 | 0.8807 | 0.8814 | 0.8787 |
655
+ | 18.1742 | 2700 | 16.2505 | 16.4188 | 0.8786 | 0.8793 | 0.8803 | 0.8771 |
656
+ | 18.5107 | 2750 | 16.226 | 16.4149 | 0.8771 | 0.8781 | 0.8780 | 0.8766 |
657
+ | 18.8473 | 2800 | 16.2106 | 16.4230 | 0.8780 | 0.8799 | 0.8791 | 0.8767 |
658
+ | 19.1838 | 2850 | 16.2052 | 16.4351 | 0.8770 | 0.8777 | 0.8785 | 0.8745 |
659
+ | 19.5204 | 2900 | 16.186 | 16.4331 | 0.8777 | 0.8793 | 0.8792 | 0.8762 |
660
+ | 19.8570 | 2950 | 16.1496 | 16.4377 | 0.8774 | 0.8781 | 0.8780 | 0.8771 |
661
+ | 20.1935 | 3000 | 16.151 | 16.4407 | 0.8766 | 0.8780 | 0.8780 | 0.8751 |
662
+ | 20.5301 | 3050 | 16.1081 | 16.4426 | 0.8759 | 0.8775 | 0.8774 | 0.8749 |
663
+ | 20.8666 | 3100 | 16.0864 | 16.4412 | 0.8774 | 0.8781 | 0.8787 | 0.8746 |
664
+ | 21.2032 | 3150 | 16.0934 | 16.4547 | 0.8768 | 0.8783 | 0.8794 | 0.8746 |
665
+ | 21.5398 | 3200 | 16.0382 | 16.4589 | 0.8742 | 0.8752 | 0.8766 | 0.8723 |
666
+ | 21.8763 | 3250 | 16.0279 | 16.4668 | 0.8752 | 0.8766 | 0.8773 | 0.8728 |
667
+ | 22.2129 | 3300 | 16.0327 | 16.4737 | 0.8742 | 0.8768 | 0.8773 | 0.8727 |
668
+ | 22.5494 | 3350 | 15.979 | 16.4686 | 0.8740 | 0.8771 | 0.8771 | 0.8722 |
669
+ | 22.8860 | 3400 | 15.9622 | 16.4736 | 0.8743 | 0.8760 | 0.8765 | 0.8721 |
670
+ | 23.2225 | 3450 | 15.9881 | 16.4802 | 0.8743 | 0.8757 | 0.8755 | 0.8723 |
671
+ | 23.5591 | 3500 | 15.9482 | 16.4821 | 0.8725 | 0.8761 | 0.8761 | 0.8710 |
672
+ | 23.8957 | 3550 | 15.9228 | 16.4996 | 0.8726 | 0.8748 | 0.8751 | 0.8709 |
673
+ | 24.2322 | 3600 | 15.9418 | 16.4973 | 0.8709 | 0.8728 | 0.8734 | 0.8699 |
674
+ | 24.5688 | 3650 | 15.896 | 16.4985 | 0.8696 | 0.8716 | 0.8727 | 0.8686 |
675
+ | 24.9053 | 3700 | 15.8788 | 16.5172 | 0.8691 | 0.8715 | 0.8717 | 0.8662 |
676
+ | 25.2419 | 3750 | 15.9147 | 16.5062 | 0.8677 | 0.8706 | 0.8712 | 0.8662 |
677
+ | 25.5785 | 3800 | 15.857 | 16.5058 | 0.8683 | 0.8717 | 0.8732 | 0.8663 |
678
+ | 25.9150 | 3850 | 15.8291 | 16.5207 | 0.8674 | 0.8702 | 0.8706 | 0.8644 |
679
+ | 26.2516 | 3900 | 15.8802 | 16.5233 | 0.8678 | 0.8697 | 0.8714 | 0.8664 |
680
+ | 26.5881 | 3950 | 15.846 | 16.5170 | 0.8686 | 0.8713 | 0.8717 | 0.8655 |
681
+ | 26.9247 | 4000 | 15.8012 | 16.5336 | 0.8663 | 0.8682 | 0.8699 | 0.8635 |
682
+
683
+
684
+ ### Framework Versions
685
+ - Python: 3.10.10
686
+ - Sentence Transformers: 3.0.1
687
+ - Transformers: 4.41.2
688
+ - PyTorch: 2.1.2+cu121
689
+ - Accelerate: 0.33.0
690
+ - Datasets: 2.19.1
691
+ - Tokenizers: 0.19.1
692
+
693
+ ## Citation
694
+
695
+ ### BibTeX
696
+
697
+ #### Sentence Transformers
698
+ ```bibtex
699
+ @inproceedings{reimers-2019-sentence-bert,
700
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
701
+ author = "Reimers, Nils and Gurevych, Iryna",
702
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
703
+ month = "11",
704
+ year = "2019",
705
+ publisher = "Association for Computational Linguistics",
706
+ url = "https://arxiv.org/abs/1908.10084",
707
+ }
708
+ ```
709
+
710
+ #### MatryoshkaLoss
711
+ ```bibtex
712
+ @misc{kusupati2024matryoshka,
713
+ title={Matryoshka Representation Learning},
714
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
715
+ year={2024},
716
+ eprint={2205.13147},
717
+ archivePrefix={arXiv},
718
+ primaryClass={cs.LG}
719
+ }
720
+ ```
721
+
722
+ #### TripletLoss
723
+ ```bibtex
724
+ @misc{hermans2017defense,
725
+ title={In Defense of the Triplet Loss for Person Re-Identification},
726
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
727
+ year={2017},
728
+ eprint={1703.07737},
729
+ archivePrefix={arXiv},
730
+ primaryClass={cs.CV}
731
+ }
732
+ ```
733
+
734
+ <!--
735
+ ## Glossary
736
+
737
+ *Clearly define terms in order to be accessible across audiences.*
738
+ -->
739
+
740
+ <!--
741
+ ## Model Card Authors
742
+
743
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
744
+ -->
745
+
746
+ <!--
747
+ ## Model Card Contact
748
+
749
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
750
+ -->
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.41.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32c68a323fc2f3bcbda00ad2a1f363f61bc7b83fc043add0d2b3b1a3ed52d464
3
+ size 133462128
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1d16a07efdf00707049d4fe19f5dec2260120f832764d37bb7c5a1ebe56f2d8
3
+ size 265864826
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c726cd6df5d0f6335ea7a2dff309473ebaa68b01c9de1540a1d24ee6255e5db
3
+ size 14244
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ce31c572ec8e79b27f5037d372accc83087de1b2e8743916a5ce48a76016091
3
+ size 1064
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe26c00a13b1f876cc56db695e59e808d1e214b61eac1c9292a292294b0541d3
3
+ size 5432
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-4000/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/README.md ADDED
@@ -0,0 +1,652 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en
3
+ datasets:
4
+ - sentence-transformers/hotpotqa
5
+ language:
6
+ - en
7
+ library_name: sentence-transformers
8
+ license: apache-2.0
9
+ metrics:
10
+ - cosine_accuracy
11
+ - dot_accuracy
12
+ - manhattan_accuracy
13
+ - euclidean_accuracy
14
+ - max_accuracy
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - generated_from_trainer
21
+ - dataset_size:76064
22
+ - loss:MatryoshkaLoss
23
+ - loss:TripletLoss
24
+ widget:
25
+ - source_sentence: The person who released "Sun Arise" was born in what year?
26
+ sentences:
27
+ - Peter Frampton Peter Kenneth Frampton (born 22 April 1950) is an English rock
28
+ musician, singer, songwriter, producer, and guitarist. He was previously associated
29
+ with the bands Humble Pie and The Herd. At the end of his 'group' career was Frampton's
30
+ international breakthrough album his live release, "Frampton Comes Alive!" The
31
+ album sold in the United States more than 8 million copies and spawned several
32
+ single hits. Since then he has released several major albums. He has also worked
33
+ with David Bowie and both Matt Cameron and Mike McCready from Pearl Jam, among
34
+ others.
35
+ - Sun Arise "Sun Arise" is the fourth single released by the Australian singer-songwriter
36
+ Rolf Harris. Released in January 1961 in Australia and October 1962 in the UK,
37
+ it was Harris' third charting hit in Australia (following "The Big Black Hat"
38
+ in 1960) and second in the UK (following "Tie Me Kangaroo Down, Sport" also 1960).
39
+ Unlike his early chart hits, "Sun Arise" was not a comedy record, but came within
40
+ the genre of world music with its didgeridoo-inspired sound.
41
+ - Circa Survive Circa Survive is an American rock band from the Philadelphia suburb
42
+ of Doylestown, formed in 2004. The band, led by Anthony Green, consists of former
43
+ members from Saosin, This Day Forward, and Taken.
44
+ - source_sentence: What year was Chuang Chia-jung's partner in the 2010 MPS Group
45
+ Championships – Doubles born?
46
+ sentences:
47
+ - Ko Olina Station and Center Ko Olina Station and Ko Olina Center make up a lifestyle
48
+ center in the resort town of Ko Olina, a neighborhood in Kapolei, Hawaii. The
49
+ shopping mall opened in 2009 and consists of two centers located across a street
50
+ from each other. Ko Olina Station debuted in 2009, while the more recent Ko Olina
51
+ Center finished construction in 2010. The centers contain a total of approximately
52
+ 31 retail tenants, with the majority of them being native Hawaiian businesses,
53
+ such as ABC Stores and Peter Merriman's MonkeyPod Kitchen.
54
+ - 2010 MPS Group Championships – Doubles Chuang Chia-jung and Sania Mirza were the
55
+ defenders of championship title, but Mirza chose not to compete.
56
+ - Lu Chia-hung Lu Chia-hung (; born 4 March 1997) is a Taiwanese male badminton
57
+ player.
58
+ - source_sentence: What son of Zeus in Greek mythology was said to have fatheres an
59
+ Argonaut seer?
60
+ sentences:
61
+ - All Net Resort and Arena All Net Resort and Arena is a planned entertainment complex
62
+ in Las Vegas. A project of businessman and former basketball player Jackie Robinson,
63
+ the complex would encompass a resort hotel, a retail and restaurant streetscape,
64
+ and a multi-purpose indoor arena with a retractable roof. Its location is set
65
+ on the Strip at the former site of a Wet 'n Wild waterpark, next to the SLS Las
66
+ Vegas in Winchester, Nevada. Designed by the Cuningham Group, it was planned to
67
+ open in 2017, but is delayed until 2018 or 2019.
68
+ - 'Piras (mythology) In Greek mythology, Piras (Ancient Greek: Πείραντα) was a king
69
+ of Argos, otherwise also known as Piren, Peiren, Peiras, Peirasus and Piranthus.'
70
+ - Idmon In Greek mythology, Idmon was an Argonaut seer. Allegedly a son of Apollo,
71
+ he had Abas (or Ampycus) as his mortal father. His mother was Asteria, daughter
72
+ of Coronus, or Cyrene, or else Antianeira, daughter of Pheres. By Laothoe he had
73
+ a son Thestor. Idmon foresaw his own death in the Argonaut expedition, but joined
74
+ anyway. During the outbound voyage of "Argo", a boar killed him in the land of
75
+ the Mariandyni, in Bithynia.
76
+ - source_sentence: In what year was the drama film in which Dorothy Duffy played Rose
77
+ / Patricia released?
78
+ sentences:
79
+ - Keith Davis (safety) Keith Lamont Davis (born December 30, 1978) is a former American
80
+ football safety in the National Football League for the Dallas Cowboys. He played
81
+ college football at Sam Houston State University.
82
+ - Dorothy Duffy Dorothy Duffy (born in Douglas Bridge, Northern Ireland) is an Irish
83
+ actress. She is best known for her performance as Rose / Patricia in "The Magdalene
84
+ Sisters".
85
+ - The Franchise Affair (film) The Franchise Affair is a 1951 British thriller film
86
+ directed by Lawrence Huntington and starring Michael Denison, Dulcie Gray, Anthony
87
+ Nicholls and Marjorie Fielding. It is a faithful adaptation of the novel "The
88
+ Franchise Affair" by Josephine Tey.
89
+ - source_sentence: Was McDull, Kung Fu Kindergarten or Pettson and Findus created
90
+ first?
91
+ sentences:
92
+ - 'Tabaluga Tabaluga is a media franchise featuring a fictional little green Dragon
93
+ of the same name, created by German Rock musician Peter Maffay, children''s songwriter
94
+ and the author . The artist Helme Heine drew the image of Tabaluga as it is currently
95
+ known. The character Tabaluga was first introduced by Peter Maffay in a musical
96
+ fairy tale "Tabaluga ... oder die Reise zur Vernunft" (Tabaluga or... The Journey
97
+ to Reason) in 1983. This first studio album was the step to success: within the
98
+ next years some Helme Heine books, four sequel concept studio albums, two resounding
99
+ tours, a stage musical, "Tabaluga und Lilli" ("Tabaluga and Lilli"), based on
100
+ the third concept album and many TV Cartoons which have been broadcasting in over
101
+ 100 countries round the world followed and a children''s game show. Over 100 kindergartens
102
+ and child care groups carry the word "Tabaluga" in their names.'
103
+ - 2005–06 FC Bayern Munich season FC Bayern Munich won the domestic double, beating
104
+ Werder Bremen by five points in Bundesliga, and defeating Eintracht Frankfurt
105
+ 1–0 in the DFB-Pokal final, thanks to a goal from Claudio Pizarro. The season
106
+ was in spite of that tainted due to a big defeat to Milan in the UEFA Champions
107
+ League, losing out 5–2 on aggregate in the Last 16. At the end of the season,
108
+ Bayern signed German football's wonderkid Lukas Podolski from Köln.
109
+ - 'Pettson and Findus Pettson and Findus (Swedish: "Pettson och Findus" ) is a series
110
+ of children''s books written and illustrated by Swedish author Sven Nordqvist.
111
+ The books feature an old farmer (Pettson) and his cat (Findus) who live in a small
112
+ ramshackle farmhouse in the countryside. The first of the Pettson och Findus book
113
+ to be published was "Pannkakstårtan" in 1984 (first published in English in 1985
114
+ as "Pancake Pie").'
115
+ model-index:
116
+ - name: BGE-base-en-v1.5-Hotpotqa
117
+ results:
118
+ - task:
119
+ type: triplet
120
+ name: Triplet
121
+ dataset:
122
+ name: dim 384
123
+ type: dim_384
124
+ metrics:
125
+ - type: cosine_accuracy
126
+ value: 0.8853525792711784
127
+ name: Cosine Accuracy
128
+ - type: dot_accuracy
129
+ value: 0.11464742072882159
130
+ name: Dot Accuracy
131
+ - type: manhattan_accuracy
132
+ value: 0.8862991008045433
133
+ name: Manhattan Accuracy
134
+ - type: euclidean_accuracy
135
+ value: 0.8853525792711784
136
+ name: Euclidean Accuracy
137
+ - type: max_accuracy
138
+ value: 0.8862991008045433
139
+ name: Max Accuracy
140
+ - task:
141
+ type: triplet
142
+ name: Triplet
143
+ dataset:
144
+ name: dim 256
145
+ type: dim_256
146
+ metrics:
147
+ - type: cosine_accuracy
148
+ value: 0.8840511121628017
149
+ name: Cosine Accuracy
150
+ - type: dot_accuracy
151
+ value: 0.11571225745385708
152
+ name: Dot Accuracy
153
+ - type: manhattan_accuracy
154
+ value: 0.8851159488878372
155
+ name: Manhattan Accuracy
156
+ - type: euclidean_accuracy
157
+ value: 0.8841694273544723
158
+ name: Euclidean Accuracy
159
+ - type: max_accuracy
160
+ value: 0.8851159488878372
161
+ name: Max Accuracy
162
+ - task:
163
+ type: triplet
164
+ name: Triplet
165
+ dataset:
166
+ name: dim 128
167
+ type: dim_128
168
+ metrics:
169
+ - type: cosine_accuracy
170
+ value: 0.8829862754377662
171
+ name: Cosine Accuracy
172
+ - type: dot_accuracy
173
+ value: 0.11831519167061051
174
+ name: Dot Accuracy
175
+ - type: manhattan_accuracy
176
+ value: 0.8823946994794132
177
+ name: Manhattan Accuracy
178
+ - type: euclidean_accuracy
179
+ value: 0.8836961665877898
180
+ name: Euclidean Accuracy
181
+ - type: max_accuracy
182
+ value: 0.8836961665877898
183
+ name: Max Accuracy
184
+ - task:
185
+ type: triplet
186
+ name: Triplet
187
+ dataset:
188
+ name: dim 64
189
+ type: dim_64
190
+ metrics:
191
+ - type: cosine_accuracy
192
+ value: 0.8815664931377188
193
+ name: Cosine Accuracy
194
+ - type: dot_accuracy
195
+ value: 0.12434926644581164
196
+ name: Dot Accuracy
197
+ - type: manhattan_accuracy
198
+ value: 0.88180312352106
199
+ name: Manhattan Accuracy
200
+ - type: euclidean_accuracy
201
+ value: 0.88180312352106
202
+ name: Euclidean Accuracy
203
+ - type: max_accuracy
204
+ value: 0.88180312352106
205
+ name: Max Accuracy
206
+ ---
207
+
208
+ # BGE-base-en-v1.5-Hotpotqa
209
+
210
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) on the [sentence-transformers/hotpotqa](https://huggingface.co/datasets/sentence-transformers/hotpotqa) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
211
+
212
+ ## Model Details
213
+
214
+ ### Model Description
215
+ - **Model Type:** Sentence Transformer
216
+ - **Base model:** [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) <!-- at revision 2275a7bdee235e9b4f01fa73aa60d3311983cfea -->
217
+ - **Maximum Sequence Length:** 512 tokens
218
+ - **Output Dimensionality:** 384 tokens
219
+ - **Similarity Function:** Cosine Similarity
220
+ - **Training Dataset:**
221
+ - [sentence-transformers/hotpotqa](https://huggingface.co/datasets/sentence-transformers/hotpotqa)
222
+ - **Language:** en
223
+ - **License:** apache-2.0
224
+
225
+ ### Model Sources
226
+
227
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
228
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
229
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
230
+
231
+ ### Full Model Architecture
232
+
233
+ ```
234
+ SentenceTransformer(
235
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
236
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
237
+ (2): Normalize()
238
+ )
239
+ ```
240
+
241
+ ## Usage
242
+
243
+ ### Direct Usage (Sentence Transformers)
244
+
245
+ First install the Sentence Transformers library:
246
+
247
+ ```bash
248
+ pip install -U sentence-transformers
249
+ ```
250
+
251
+ Then you can load this model and run inference.
252
+ ```python
253
+ from sentence_transformers import SentenceTransformer
254
+
255
+ # Download from the 🤗 Hub
256
+ model = SentenceTransformer("sentence_transformers_model_id")
257
+ # Run inference
258
+ sentences = [
259
+ 'Was McDull, Kung Fu Kindergarten or Pettson and Findus created first?',
260
+ 'Pettson and Findus Pettson and Findus (Swedish: "Pettson och Findus" ) is a series of children\'s books written and illustrated by Swedish author Sven Nordqvist. The books feature an old farmer (Pettson) and his cat (Findus) who live in a small ramshackle farmhouse in the countryside. The first of the Pettson och Findus book to be published was "Pannkakstårtan" in 1984 (first published in English in 1985 as "Pancake Pie").',
261
+ 'Tabaluga Tabaluga is a media franchise featuring a fictional little green Dragon of the same name, created by German Rock musician Peter Maffay, children\'s songwriter and the author . The artist Helme Heine drew the image of Tabaluga as it is currently known. The character Tabaluga was first introduced by Peter Maffay in a musical fairy tale "Tabaluga ... oder die Reise zur Vernunft" (Tabaluga or... The Journey to Reason) in 1983. This first studio album was the step to success: within the next years some Helme Heine books, four sequel concept studio albums, two resounding tours, a stage musical, "Tabaluga und Lilli" ("Tabaluga and Lilli"), based on the third concept album and many TV Cartoons which have been broadcasting in over 100 countries round the world followed and a children\'s game show. Over 100 kindergartens and child care groups carry the word "Tabaluga" in their names.',
262
+ ]
263
+ embeddings = model.encode(sentences)
264
+ print(embeddings.shape)
265
+ # [3, 384]
266
+
267
+ # Get the similarity scores for the embeddings
268
+ similarities = model.similarity(embeddings, embeddings)
269
+ print(similarities.shape)
270
+ # [3, 3]
271
+ ```
272
+
273
+ <!--
274
+ ### Direct Usage (Transformers)
275
+
276
+ <details><summary>Click to see the direct usage in Transformers</summary>
277
+
278
+ </details>
279
+ -->
280
+
281
+ <!--
282
+ ### Downstream Usage (Sentence Transformers)
283
+
284
+ You can finetune this model on your own dataset.
285
+
286
+ <details><summary>Click to expand</summary>
287
+
288
+ </details>
289
+ -->
290
+
291
+ <!--
292
+ ### Out-of-Scope Use
293
+
294
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
295
+ -->
296
+
297
+ ## Evaluation
298
+
299
+ ### Metrics
300
+
301
+ #### Triplet
302
+ * Dataset: `dim_384`
303
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
304
+
305
+ | Metric | Value |
306
+ |:--------------------|:-----------|
307
+ | **cosine_accuracy** | **0.8854** |
308
+ | dot_accuracy | 0.1146 |
309
+ | manhattan_accuracy | 0.8863 |
310
+ | euclidean_accuracy | 0.8854 |
311
+ | max_accuracy | 0.8863 |
312
+
313
+ #### Triplet
314
+ * Dataset: `dim_256`
315
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
316
+
317
+ | Metric | Value |
318
+ |:--------------------|:-----------|
319
+ | **cosine_accuracy** | **0.8841** |
320
+ | dot_accuracy | 0.1157 |
321
+ | manhattan_accuracy | 0.8851 |
322
+ | euclidean_accuracy | 0.8842 |
323
+ | max_accuracy | 0.8851 |
324
+
325
+ #### Triplet
326
+ * Dataset: `dim_128`
327
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
328
+
329
+ | Metric | Value |
330
+ |:--------------------|:----------|
331
+ | **cosine_accuracy** | **0.883** |
332
+ | dot_accuracy | 0.1183 |
333
+ | manhattan_accuracy | 0.8824 |
334
+ | euclidean_accuracy | 0.8837 |
335
+ | max_accuracy | 0.8837 |
336
+
337
+ #### Triplet
338
+ * Dataset: `dim_64`
339
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
340
+
341
+ | Metric | Value |
342
+ |:--------------------|:-----------|
343
+ | **cosine_accuracy** | **0.8816** |
344
+ | dot_accuracy | 0.1243 |
345
+ | manhattan_accuracy | 0.8818 |
346
+ | euclidean_accuracy | 0.8818 |
347
+ | max_accuracy | 0.8818 |
348
+
349
+ <!--
350
+ ## Bias, Risks and Limitations
351
+
352
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
353
+ -->
354
+
355
+ <!--
356
+ ### Recommendations
357
+
358
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
359
+ -->
360
+
361
+ ## Training Details
362
+
363
+ ### Training Dataset
364
+
365
+ #### sentence-transformers/hotpotqa
366
+
367
+ * Dataset: [sentence-transformers/hotpotqa](https://huggingface.co/datasets/sentence-transformers/hotpotqa) at [f07d3cd](https://huggingface.co/datasets/sentence-transformers/hotpotqa/tree/f07d3cd2d290ea2e83ed35e33d67d6a4658b8786)
368
+ * Size: 76,064 training samples
369
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
370
+ * Approximate statistics based on the first 1000 samples:
371
+ | | anchor | positive | negative |
372
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
373
+ | type | string | string | string |
374
+ | details | <ul><li>min: 7 tokens</li><li>mean: 25.02 tokens</li><li>max: 103 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 100.08 tokens</li><li>max: 315 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 89.42 tokens</li><li>max: 375 tokens</li></ul> |
375
+ * Samples:
376
+ | anchor | positive | negative |
377
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
378
+ | <code>What type of songs is the singer of Saahore Baahubali best known for?</code> | <code>Saahore Baahubali "Saahore Baahubali" (English: Glory be to Baahubali) is a Telugu song from the 2017 film . Sung by Daler Mehndi, the song is composed by M. M. Keeravani, with lyrics penned by his father Siva Shakti Datta and Kodi Ramakrishna. Most of the lyrics were composed in Sanskrit.</code> | <code>Anupama Deshpande Anupama Deshapande is a Bollywood playback singer who has won the Filmfare Award for Best Female Playback Singer for her folk song "Sohni Chinab Di" in the film "Sohni Mahiwal" (1984). This song was originally meant for Asha Bhonsle who since was busy those days. Therefore, Annu Malik recorded this song in the voice of Anupama Deshpande so that it could later on dubbed by Asha Bhonsle. But on listening the song, Asha Bhonsle sportingly advised to retain the song as it was, in the voice of Anupama Deshpande by giving full credit to the anupama's singing talent. She has sung a total of 124 songs in 92 films.</code> |
379
+ | <code>'Dot TV' was owned and operated by a Pan-European satellite broadcasting, on-demand internet streaming media, broadband and telephone services company with headquarters where?</code> | <code>.tv (TV channel) .tv (Pronounced as 'Dot TV', referred to onscreen as .tv - the technology channel) was a British television channel dedicated to technology. .tv was owned and operated by British Sky Broadcasting. The channel began broadcasting on 1 September 1996 as "The Computer Channel" and broadcast between 18:00 and 20:00. The broadcasting hours were increased to midday-midnight when "The Computer Channel" (later .tv) started broadcasting on British Sky Broadcasting's digital satellite platform, Sky Digital in 1998. In 1999 the channel interviewed then Microsoft CEO Bill Gates.</code> | <code>Movistar TV Movistar TV is an IPTV service operated by Telefónica. The service was started as a commercial test pilot in the city of Alicante in 2001 and later extended to some major cities such as Madrid and Barcelona in April 2004. In 2013, Movistar Imagenio was rebranded to Movistar TV.</code> |
380
+ | <code>Elvira Madigan's father was born in what year?</code> | <code>Gisela Brož Gisela Antonia Brož (Brosch) (also sometimes referred to as Gisela Madigan), (4 April 1865 - 1945) was an Austrian-American circus performer, tight rope dancer, and clown. Her parents were shoemaker Joseph Brož and his wife Maria. She went to convent school in Siebenbürgen and at the age of 15 she got to know the circus family Madigans with John and Laura who at that time toured with circus Krembser in Vienna. Gisela became their foster child and got to learn tight rope dancing, this along with the couple's two year younger daughter Elvira Madigan.</code> | <code>Elvira Casazza Elvira Casazza (15 November 1887 – 24 January 1965) was an Italian mezzo-soprano opera singer (also known as Elvira Mari-Casazza). One of Toscanini's favourite singers, she was considered an outstanding interpreter of Mistress Quickly in Verdi's "Falstaff" during the 1920s and created several roles in Italian operas of the early 20th century.</code> |
381
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
382
+ ```json
383
+ {
384
+ "loss": "TripletLoss",
385
+ "matryoshka_dims": [
386
+ 384,
387
+ 256,
388
+ 128,
389
+ 64
390
+ ],
391
+ "matryoshka_weights": [
392
+ 1,
393
+ 1,
394
+ 1,
395
+ 1
396
+ ],
397
+ "n_dims_per_step": -1
398
+ }
399
+ ```
400
+
401
+ ### Evaluation Dataset
402
+
403
+ #### sentence-transformers/hotpotqa
404
+
405
+ * Dataset: [sentence-transformers/hotpotqa](https://huggingface.co/datasets/sentence-transformers/hotpotqa) at [f07d3cd](https://huggingface.co/datasets/sentence-transformers/hotpotqa/tree/f07d3cd2d290ea2e83ed35e33d67d6a4658b8786)
406
+ * Size: 8,452 evaluation samples
407
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
408
+ * Approximate statistics based on the first 1000 samples:
409
+ | | anchor | positive | negative |
410
+ |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
411
+ | type | string | string | string |
412
+ | details | <ul><li>min: 10 tokens</li><li>mean: 25.14 tokens</li><li>max: 130 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 102.4 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 88.09 tokens</li><li>max: 358 tokens</li></ul> |
413
+ * Samples:
414
+ | anchor | positive | negative |
415
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
416
+ | <code>When was the English former professional footballer which Tslil Sela has an alledged relationship with born?</code> | <code>Tslil Sela Tslil Sela (Hebrew: צליל סלע‎ ‎ , born 26 October 1987) is an Israeli model, most known for her modeling work and for her alleged relationship with English footballer Rio Ferdinand. Sela is leading the campaign for KOOI fashion 2010, and Sanyang Motorcycles (SYM Motors) in Israel.</code> | <code>Sam Collins (English footballer) Samuel Jason Collins (born 5 June 1977) is an English football manager and former footballer who played as a defender. His brother, Simon, is also a former professional footballer and manager.</code> |
417
+ | <code>Gebhard Leberecht von Blucher the Prussian Generalfieldmarschall led his army against this famous commander in the Battle of Lepzig?</code> | <code>Gebhard Leberecht von Blücher Gebhard Leberecht von Blücher, Fürst von Wahlstatt (] ; 16 December 1742 – 12 September 1819), "Graf" (count), later elevated to "Fürst" (sovereign prince) von Wahlstatt, was a Prussian "Generalfeldmarschall" (field marshal). He earned his greatest recognition after leading his army against Napoleon I at the Battle of the Nations at Leipzig in 1813 and the Battle of Waterloo in 1815.</code> | <code>Karl Freiherr von Müffling Friedrich Karl Ferdinand Freiherr von Müffling, called Weiss (12 June 177510 January 1851) was a Prussian "Generalfeldmarschall" and military theorist. He served as Blücher's liaison officer in Wellington's headquarters during the Battle of Waterloo and was one of the organizers of the final victory over Napoleon. After the wars he served a diplomatic role at the Congress of Aix-la-Chappelle and was a major contributor to the development of the Prussian General Staff as Chief. Müffling also specialized in military topography and cartography.</code> |
418
+ | <code>The Platonia Dilemma was introduced in the book "Metamagical Themas" which was written by an author born in what year?</code> | <code>Platonia dilemma In the platonia dilemma introduced in Douglas Hofstadter's book "Metamagical Themas", an eccentric trillionaire gathers 20 people together, and tells them that if one and only one of them sends him a telegram (reverse charges) by noon the next day, that person will receive a billion dollars. If he receives more than one telegram, or none at all, no one will get any money, and cooperation between players is forbidden. In this situation, the superrational thing to do is to send a telegram with probability 1/20.</code> | <code>John Alexander Stewart (philosopher) John Alexander Stewart (19 October 1846 – 27 December 1933) was a Scottish writer, educator and philosopher. He was a university professor and classical lecturer at Christ Church, Oxford from 1875 to 1883, White's Professor of Moral Philosophy at Oxford, and professorial fellow of Corpus Christi College, from 1897 to his retirement in 1927. Throughout his academic career, he was an editor and author of works on Aristotle and considered one of the foremost experts on the subject. His best known books were "Notes on the Nicomachean Ethics of Aristotle" (1892) and "The Myths of Plato" (1905).</code> |
419
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
420
+ ```json
421
+ {
422
+ "loss": "TripletLoss",
423
+ "matryoshka_dims": [
424
+ 384,
425
+ 256,
426
+ 128,
427
+ 64
428
+ ],
429
+ "matryoshka_weights": [
430
+ 1,
431
+ 1,
432
+ 1,
433
+ 1
434
+ ],
435
+ "n_dims_per_step": -1
436
+ }
437
+ ```
438
+
439
+ ### Training Hyperparameters
440
+ #### Non-Default Hyperparameters
441
+
442
+ - `eval_strategy`: steps
443
+ - `per_device_train_batch_size`: 32
444
+ - `per_device_eval_batch_size`: 32
445
+ - `gradient_accumulation_steps`: 16
446
+ - `learning_rate`: 2e-05
447
+ - `num_train_epochs`: 20
448
+ - `lr_scheduler_type`: cosine
449
+ - `warmup_ratio`: 0.1
450
+ - `bf16`: True
451
+ - `tf32`: True
452
+ - `load_best_model_at_end`: True
453
+ - `optim`: adamw_torch_fused
454
+ - `resume_from_checkpoint`: bge-small-hotpotwa-matryoshka
455
+ - `batch_sampler`: no_duplicates
456
+
457
+ #### All Hyperparameters
458
+ <details><summary>Click to expand</summary>
459
+
460
+ - `overwrite_output_dir`: False
461
+ - `do_predict`: False
462
+ - `eval_strategy`: steps
463
+ - `prediction_loss_only`: True
464
+ - `per_device_train_batch_size`: 32
465
+ - `per_device_eval_batch_size`: 32
466
+ - `per_gpu_train_batch_size`: None
467
+ - `per_gpu_eval_batch_size`: None
468
+ - `gradient_accumulation_steps`: 16
469
+ - `eval_accumulation_steps`: None
470
+ - `learning_rate`: 2e-05
471
+ - `weight_decay`: 0.0
472
+ - `adam_beta1`: 0.9
473
+ - `adam_beta2`: 0.999
474
+ - `adam_epsilon`: 1e-08
475
+ - `max_grad_norm`: 1.0
476
+ - `num_train_epochs`: 20
477
+ - `max_steps`: -1
478
+ - `lr_scheduler_type`: cosine
479
+ - `lr_scheduler_kwargs`: {}
480
+ - `warmup_ratio`: 0.1
481
+ - `warmup_steps`: 0
482
+ - `log_level`: passive
483
+ - `log_level_replica`: warning
484
+ - `log_on_each_node`: True
485
+ - `logging_nan_inf_filter`: True
486
+ - `save_safetensors`: True
487
+ - `save_on_each_node`: False
488
+ - `save_only_model`: False
489
+ - `restore_callback_states_from_checkpoint`: False
490
+ - `no_cuda`: False
491
+ - `use_cpu`: False
492
+ - `use_mps_device`: False
493
+ - `seed`: 42
494
+ - `data_seed`: None
495
+ - `jit_mode_eval`: False
496
+ - `use_ipex`: False
497
+ - `bf16`: True
498
+ - `fp16`: False
499
+ - `fp16_opt_level`: O1
500
+ - `half_precision_backend`: auto
501
+ - `bf16_full_eval`: False
502
+ - `fp16_full_eval`: False
503
+ - `tf32`: True
504
+ - `local_rank`: 0
505
+ - `ddp_backend`: None
506
+ - `tpu_num_cores`: None
507
+ - `tpu_metrics_debug`: False
508
+ - `debug`: []
509
+ - `dataloader_drop_last`: False
510
+ - `dataloader_num_workers`: 0
511
+ - `dataloader_prefetch_factor`: None
512
+ - `past_index`: -1
513
+ - `disable_tqdm`: False
514
+ - `remove_unused_columns`: True
515
+ - `label_names`: None
516
+ - `load_best_model_at_end`: True
517
+ - `ignore_data_skip`: False
518
+ - `fsdp`: []
519
+ - `fsdp_min_num_params`: 0
520
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
521
+ - `fsdp_transformer_layer_cls_to_wrap`: None
522
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
523
+ - `deepspeed`: None
524
+ - `label_smoothing_factor`: 0.0
525
+ - `optim`: adamw_torch_fused
526
+ - `optim_args`: None
527
+ - `adafactor`: False
528
+ - `group_by_length`: False
529
+ - `length_column_name`: length
530
+ - `ddp_find_unused_parameters`: None
531
+ - `ddp_bucket_cap_mb`: None
532
+ - `ddp_broadcast_buffers`: False
533
+ - `dataloader_pin_memory`: True
534
+ - `dataloader_persistent_workers`: False
535
+ - `skip_memory_metrics`: True
536
+ - `use_legacy_prediction_loop`: False
537
+ - `push_to_hub`: False
538
+ - `resume_from_checkpoint`: bge-small-hotpotwa-matryoshka
539
+ - `hub_model_id`: None
540
+ - `hub_strategy`: every_save
541
+ - `hub_private_repo`: False
542
+ - `hub_always_push`: False
543
+ - `gradient_checkpointing`: False
544
+ - `gradient_checkpointing_kwargs`: None
545
+ - `include_inputs_for_metrics`: False
546
+ - `eval_do_concat_batches`: True
547
+ - `fp16_backend`: auto
548
+ - `push_to_hub_model_id`: None
549
+ - `push_to_hub_organization`: None
550
+ - `mp_parameters`:
551
+ - `auto_find_batch_size`: False
552
+ - `full_determinism`: False
553
+ - `torchdynamo`: None
554
+ - `ray_scope`: last
555
+ - `ddp_timeout`: 1800
556
+ - `torch_compile`: False
557
+ - `torch_compile_backend`: None
558
+ - `torch_compile_mode`: None
559
+ - `dispatch_batches`: None
560
+ - `split_batches`: None
561
+ - `include_tokens_per_second`: False
562
+ - `include_num_input_tokens_seen`: False
563
+ - `neftune_noise_alpha`: None
564
+ - `optim_target_modules`: None
565
+ - `batch_eval_metrics`: False
566
+ - `batch_sampler`: no_duplicates
567
+ - `multi_dataset_batch_sampler`: proportional
568
+
569
+ </details>
570
+
571
+ ### Training Logs
572
+ | Epoch | Step | Training Loss | loss | dim_128_cosine_accuracy | dim_256_cosine_accuracy | dim_384_cosine_accuracy | dim_64_cosine_accuracy |
573
+ |:------:|:----:|:-------------:|:-------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|
574
+ | 0.3366 | 50 | 19.5492 | 19.2604 | 0.9585 | 0.9657 | 0.9663 | 0.9432 |
575
+ | 0.6731 | 100 | 19.1976 | 18.2958 | 0.9359 | 0.9392 | 0.9425 | 0.9276 |
576
+ | 1.0097 | 150 | 18.4746 | 16.9846 | 0.9053 | 0.9075 | 0.9085 | 0.8996 |
577
+ | 1.3462 | 200 | 18.0684 | 16.6869 | 0.9030 | 0.9051 | 0.9049 | 0.8959 |
578
+ | 1.6828 | 250 | 17.8979 | 16.5780 | 0.9017 | 0.9030 | 0.9016 | 0.8954 |
579
+ | 2.0194 | 300 | 17.7545 | 16.5135 | 0.8977 | 0.8991 | 0.8984 | 0.8925 |
580
+ | 2.3559 | 350 | 17.6046 | 16.4917 | 0.8894 | 0.8894 | 0.8907 | 0.8862 |
581
+ | 2.6925 | 400 | 17.4434 | 16.4926 | 0.8874 | 0.8862 | 0.8875 | 0.8858 |
582
+ | 3.0290 | 450 | 17.3278 | 16.4757 | 0.8854 | 0.8861 | 0.8869 | 0.8859 |
583
+ | 3.3656 | 500 | 17.247 | 16.4735 | 0.8830 | 0.8841 | 0.8854 | 0.8816 |
584
+
585
+
586
+ ### Framework Versions
587
+ - Python: 3.10.10
588
+ - Sentence Transformers: 3.0.1
589
+ - Transformers: 4.41.2
590
+ - PyTorch: 2.1.2+cu121
591
+ - Accelerate: 0.33.0
592
+ - Datasets: 2.19.1
593
+ - Tokenizers: 0.19.1
594
+
595
+ ## Citation
596
+
597
+ ### BibTeX
598
+
599
+ #### Sentence Transformers
600
+ ```bibtex
601
+ @inproceedings{reimers-2019-sentence-bert,
602
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
603
+ author = "Reimers, Nils and Gurevych, Iryna",
604
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
605
+ month = "11",
606
+ year = "2019",
607
+ publisher = "Association for Computational Linguistics",
608
+ url = "https://arxiv.org/abs/1908.10084",
609
+ }
610
+ ```
611
+
612
+ #### MatryoshkaLoss
613
+ ```bibtex
614
+ @misc{kusupati2024matryoshka,
615
+ title={Matryoshka Representation Learning},
616
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
617
+ year={2024},
618
+ eprint={2205.13147},
619
+ archivePrefix={arXiv},
620
+ primaryClass={cs.LG}
621
+ }
622
+ ```
623
+
624
+ #### TripletLoss
625
+ ```bibtex
626
+ @misc{hermans2017defense,
627
+ title={In Defense of the Triplet Loss for Person Re-Identification},
628
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
629
+ year={2017},
630
+ eprint={1703.07737},
631
+ archivePrefix={arXiv},
632
+ primaryClass={cs.CV}
633
+ }
634
+ ```
635
+
636
+ <!--
637
+ ## Glossary
638
+
639
+ *Clearly define terms in order to be accessible across audiences.*
640
+ -->
641
+
642
+ <!--
643
+ ## Model Card Authors
644
+
645
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
646
+ -->
647
+
648
+ <!--
649
+ ## Model Card Contact
650
+
651
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
652
+ -->
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.41.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb08f6589b58e9d3fadcf2b2ed9628bf2eac3bdf5d4015735927f2c7b5e8cf7b
3
+ size 133462128
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1325fdcacc804e5836892a63c0ea0c217e9190358eb965580a921da1bfad3cdb
3
+ size 265864826
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f70133db44ffb7d1b29bfcc8d15e888edbe69b2fd41593d854fa434588dfc8a5
3
+ size 14244
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d842bdc64ca650270121e8f09797d40d02a97c725d9b11acbb56736de933dc7
3
+ size 1064
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/trainer_state.json ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.8829862754377662,
3
+ "best_model_checkpoint": "bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500",
4
+ "epoch": 3.3655868742111905,
5
+ "eval_steps": 50,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.33655868742111905,
13
+ "grad_norm": 1.810544490814209,
14
+ "learning_rate": 3.3783783783783788e-06,
15
+ "loss": 19.5492,
16
+ "step": 50
17
+ },
18
+ {
19
+ "epoch": 0.33655868742111905,
20
+ "eval_dim_128_cosine_accuracy": 0.9584713677236157,
21
+ "eval_dim_128_dot_accuracy": 0.06874112636062471,
22
+ "eval_dim_128_euclidean_accuracy": 0.9569332702318978,
23
+ "eval_dim_128_manhattan_accuracy": 0.9557501183151916,
24
+ "eval_dim_128_max_accuracy": 0.9584713677236157,
25
+ "eval_dim_256_cosine_accuracy": 0.9656885944155229,
26
+ "eval_dim_256_dot_accuracy": 0.03726928537624231,
27
+ "eval_dim_256_euclidean_accuracy": 0.9667534311405585,
28
+ "eval_dim_256_manhattan_accuracy": 0.9635589209654519,
29
+ "eval_dim_256_max_accuracy": 0.9667534311405585,
30
+ "eval_dim_384_cosine_accuracy": 0.966280170373876,
31
+ "eval_dim_384_dot_accuracy": 0.03371982962612399,
32
+ "eval_dim_384_euclidean_accuracy": 0.966280170373876,
33
+ "eval_dim_384_manhattan_accuracy": 0.9650970184571699,
34
+ "eval_dim_384_max_accuracy": 0.966280170373876,
35
+ "eval_dim_64_cosine_accuracy": 0.943208707998107,
36
+ "eval_dim_64_dot_accuracy": 0.1025792711784193,
37
+ "eval_dim_64_euclidean_accuracy": 0.941670610506389,
38
+ "eval_dim_64_manhattan_accuracy": 0.9364647420728821,
39
+ "eval_dim_64_max_accuracy": 0.943208707998107,
40
+ "eval_loss": 19.260427474975586,
41
+ "eval_runtime": 113.0655,
42
+ "eval_samples_per_second": 74.753,
43
+ "eval_sequential_score": 0.943208707998107,
44
+ "eval_steps_per_second": 2.344,
45
+ "step": 50
46
+ },
47
+ {
48
+ "epoch": 0.6731173748422381,
49
+ "grad_norm": 1.9286330938339233,
50
+ "learning_rate": 6.7567567567567575e-06,
51
+ "loss": 19.1976,
52
+ "step": 100
53
+ },
54
+ {
55
+ "epoch": 0.6731173748422381,
56
+ "eval_dim_128_cosine_accuracy": 0.9358731661145291,
57
+ "eval_dim_128_dot_accuracy": 0.0698059630856602,
58
+ "eval_dim_128_euclidean_accuracy": 0.9371746332229058,
59
+ "eval_dim_128_manhattan_accuracy": 0.9326786559394227,
60
+ "eval_dim_128_max_accuracy": 0.9371746332229058,
61
+ "eval_dim_256_cosine_accuracy": 0.9391859914813062,
62
+ "eval_dim_256_dot_accuracy": 0.06282536677709417,
63
+ "eval_dim_256_euclidean_accuracy": 0.9390676762896356,
64
+ "eval_dim_256_manhattan_accuracy": 0.9387127307146238,
65
+ "eval_dim_256_max_accuracy": 0.9391859914813062,
66
+ "eval_dim_384_cosine_accuracy": 0.9424988168480833,
67
+ "eval_dim_384_dot_accuracy": 0.057501183151916706,
68
+ "eval_dim_384_euclidean_accuracy": 0.9424988168480833,
69
+ "eval_dim_384_manhattan_accuracy": 0.9403691433980123,
70
+ "eval_dim_384_max_accuracy": 0.9424988168480833,
71
+ "eval_dim_64_cosine_accuracy": 0.9275911026975864,
72
+ "eval_dim_64_dot_accuracy": 0.08021769995267393,
73
+ "eval_dim_64_euclidean_accuracy": 0.92830099384761,
74
+ "eval_dim_64_manhattan_accuracy": 0.9260530052058684,
75
+ "eval_dim_64_max_accuracy": 0.92830099384761,
76
+ "eval_loss": 18.295848846435547,
77
+ "eval_runtime": 112.3139,
78
+ "eval_samples_per_second": 75.253,
79
+ "eval_sequential_score": 0.9275911026975864,
80
+ "eval_steps_per_second": 2.359,
81
+ "step": 100
82
+ },
83
+ {
84
+ "epoch": 1.0096760622633572,
85
+ "grad_norm": 1.4801104068756104,
86
+ "learning_rate": 1.0135135135135136e-05,
87
+ "loss": 18.4746,
88
+ "step": 150
89
+ },
90
+ {
91
+ "epoch": 1.0096760622633572,
92
+ "eval_dim_128_cosine_accuracy": 0.9053478466635116,
93
+ "eval_dim_128_dot_accuracy": 0.09548035967818268,
94
+ "eval_dim_128_euclidean_accuracy": 0.9085423568386181,
95
+ "eval_dim_128_manhattan_accuracy": 0.9060577378135353,
96
+ "eval_dim_128_max_accuracy": 0.9085423568386181,
97
+ "eval_dim_256_cosine_accuracy": 0.9074775201135826,
98
+ "eval_dim_256_dot_accuracy": 0.09264079507808802,
99
+ "eval_dim_256_euclidean_accuracy": 0.9093705631803124,
100
+ "eval_dim_256_manhattan_accuracy": 0.907950780880265,
101
+ "eval_dim_256_max_accuracy": 0.9093705631803124,
102
+ "eval_dim_384_cosine_accuracy": 0.9085423568386181,
103
+ "eval_dim_384_dot_accuracy": 0.09145764316138193,
104
+ "eval_dim_384_euclidean_accuracy": 0.9085423568386181,
105
+ "eval_dim_384_manhattan_accuracy": 0.9081874112636062,
106
+ "eval_dim_384_max_accuracy": 0.9085423568386181,
107
+ "eval_dim_64_cosine_accuracy": 0.8995504022716517,
108
+ "eval_dim_64_dot_accuracy": 0.10234264079507809,
109
+ "eval_dim_64_euclidean_accuracy": 0.9028632276384287,
110
+ "eval_dim_64_manhattan_accuracy": 0.900970184571699,
111
+ "eval_dim_64_max_accuracy": 0.9028632276384287,
112
+ "eval_loss": 16.984577178955078,
113
+ "eval_runtime": 112.2207,
114
+ "eval_samples_per_second": 75.316,
115
+ "eval_sequential_score": 0.8995504022716517,
116
+ "eval_steps_per_second": 2.361,
117
+ "step": 150
118
+ },
119
+ {
120
+ "epoch": 1.3462347496844762,
121
+ "grad_norm": 1.4812753200531006,
122
+ "learning_rate": 1.3513513513513515e-05,
123
+ "loss": 18.0684,
124
+ "step": 200
125
+ },
126
+ {
127
+ "epoch": 1.3462347496844762,
128
+ "eval_dim_128_cosine_accuracy": 0.9029815428300993,
129
+ "eval_dim_128_dot_accuracy": 0.09737340274491245,
130
+ "eval_dim_128_euclidean_accuracy": 0.900378608613346,
131
+ "eval_dim_128_manhattan_accuracy": 0.9004969238050166,
132
+ "eval_dim_128_max_accuracy": 0.9029815428300993,
133
+ "eval_dim_256_cosine_accuracy": 0.9051112162801703,
134
+ "eval_dim_256_dot_accuracy": 0.09512541410317085,
135
+ "eval_dim_256_euclidean_accuracy": 0.9034548035967819,
136
+ "eval_dim_256_manhattan_accuracy": 0.9021533364884051,
137
+ "eval_dim_256_max_accuracy": 0.9051112162801703,
138
+ "eval_dim_384_cosine_accuracy": 0.9048745858968291,
139
+ "eval_dim_384_dot_accuracy": 0.09512541410317085,
140
+ "eval_dim_384_euclidean_accuracy": 0.9048745858968291,
141
+ "eval_dim_384_manhattan_accuracy": 0.9029815428300993,
142
+ "eval_dim_384_max_accuracy": 0.9048745858968291,
143
+ "eval_dim_64_cosine_accuracy": 0.8958826313298628,
144
+ "eval_dim_64_dot_accuracy": 0.10506389020350212,
145
+ "eval_dim_64_euclidean_accuracy": 0.8997870326549929,
146
+ "eval_dim_64_manhattan_accuracy": 0.8989588263132986,
147
+ "eval_dim_64_max_accuracy": 0.8997870326549929,
148
+ "eval_loss": 16.686861038208008,
149
+ "eval_runtime": 112.2576,
150
+ "eval_samples_per_second": 75.291,
151
+ "eval_sequential_score": 0.8958826313298628,
152
+ "eval_steps_per_second": 2.361,
153
+ "step": 200
154
+ },
155
+ {
156
+ "epoch": 1.6827934371055953,
157
+ "grad_norm": 1.361006736755371,
158
+ "learning_rate": 1.6891891891891896e-05,
159
+ "loss": 17.8979,
160
+ "step": 250
161
+ },
162
+ {
163
+ "epoch": 1.6827934371055953,
164
+ "eval_dim_128_cosine_accuracy": 0.9016800757217227,
165
+ "eval_dim_128_dot_accuracy": 0.09867486985328916,
166
+ "eval_dim_128_euclidean_accuracy": 0.9020350212967345,
167
+ "eval_dim_128_manhattan_accuracy": 0.9000236630383341,
168
+ "eval_dim_128_max_accuracy": 0.9020350212967345,
169
+ "eval_dim_256_cosine_accuracy": 0.9029815428300993,
170
+ "eval_dim_256_dot_accuracy": 0.09831992427827733,
171
+ "eval_dim_256_euclidean_accuracy": 0.900970184571699,
172
+ "eval_dim_256_manhattan_accuracy": 0.9026265972550875,
173
+ "eval_dim_256_max_accuracy": 0.9029815428300993,
174
+ "eval_dim_384_cosine_accuracy": 0.9015617605300521,
175
+ "eval_dim_384_dot_accuracy": 0.09843823946994794,
176
+ "eval_dim_384_euclidean_accuracy": 0.9015617605300521,
177
+ "eval_dim_384_manhattan_accuracy": 0.9032181732134406,
178
+ "eval_dim_384_max_accuracy": 0.9032181732134406,
179
+ "eval_dim_64_cosine_accuracy": 0.8954093705631803,
180
+ "eval_dim_64_dot_accuracy": 0.10518220539517274,
181
+ "eval_dim_64_euclidean_accuracy": 0.8995504022716517,
182
+ "eval_dim_64_manhattan_accuracy": 0.8978939895882632,
183
+ "eval_dim_64_max_accuracy": 0.8995504022716517,
184
+ "eval_loss": 16.577987670898438,
185
+ "eval_runtime": 112.319,
186
+ "eval_samples_per_second": 75.25,
187
+ "eval_sequential_score": 0.8954093705631803,
188
+ "eval_steps_per_second": 2.359,
189
+ "step": 250
190
+ },
191
+ {
192
+ "epoch": 2.0193521245267143,
193
+ "grad_norm": 1.656162142753601,
194
+ "learning_rate": 1.9999888744757143e-05,
195
+ "loss": 17.7545,
196
+ "step": 300
197
+ },
198
+ {
199
+ "epoch": 2.0193521245267143,
200
+ "eval_dim_128_cosine_accuracy": 0.897657359204922,
201
+ "eval_dim_128_dot_accuracy": 0.10328916232844297,
202
+ "eval_dim_128_euclidean_accuracy": 0.8977756743965926,
203
+ "eval_dim_128_manhattan_accuracy": 0.896710837671557,
204
+ "eval_dim_128_max_accuracy": 0.8977756743965926,
205
+ "eval_dim_256_cosine_accuracy": 0.8990771415049692,
206
+ "eval_dim_256_dot_accuracy": 0.10210601041173686,
207
+ "eval_dim_256_euclidean_accuracy": 0.8981306199716044,
208
+ "eval_dim_256_manhattan_accuracy": 0.8968291528632276,
209
+ "eval_dim_256_max_accuracy": 0.8990771415049692,
210
+ "eval_dim_384_cosine_accuracy": 0.8983672503549456,
211
+ "eval_dim_384_dot_accuracy": 0.10163274964505442,
212
+ "eval_dim_384_euclidean_accuracy": 0.8983672503549456,
213
+ "eval_dim_384_manhattan_accuracy": 0.897657359204922,
214
+ "eval_dim_384_max_accuracy": 0.8983672503549456,
215
+ "eval_dim_64_cosine_accuracy": 0.8924514907714151,
216
+ "eval_dim_64_dot_accuracy": 0.10884997633696167,
217
+ "eval_dim_64_euclidean_accuracy": 0.8923331755797445,
218
+ "eval_dim_64_manhattan_accuracy": 0.8930430667297681,
219
+ "eval_dim_64_max_accuracy": 0.8930430667297681,
220
+ "eval_loss": 16.513458251953125,
221
+ "eval_runtime": 111.7362,
222
+ "eval_samples_per_second": 75.642,
223
+ "eval_sequential_score": 0.8924514907714151,
224
+ "eval_steps_per_second": 2.372,
225
+ "step": 300
226
+ },
227
+ {
228
+ "epoch": 2.3559108119478336,
229
+ "grad_norm": 2.0629849433898926,
230
+ "learning_rate": 1.9979730545608128e-05,
231
+ "loss": 17.6046,
232
+ "step": 350
233
+ },
234
+ {
235
+ "epoch": 2.3559108119478336,
236
+ "eval_dim_128_cosine_accuracy": 0.8893752957879791,
237
+ "eval_dim_128_dot_accuracy": 0.11074301940369144,
238
+ "eval_dim_128_euclidean_accuracy": 0.8889020350212967,
239
+ "eval_dim_128_manhattan_accuracy": 0.8898485565546617,
240
+ "eval_dim_128_max_accuracy": 0.8898485565546617,
241
+ "eval_dim_256_cosine_accuracy": 0.8893752957879791,
242
+ "eval_dim_256_dot_accuracy": 0.11086133459536204,
243
+ "eval_dim_256_euclidean_accuracy": 0.8896119261713203,
244
+ "eval_dim_256_manhattan_accuracy": 0.8904401325130147,
245
+ "eval_dim_256_max_accuracy": 0.8904401325130147,
246
+ "eval_dim_384_cosine_accuracy": 0.8906767628963559,
247
+ "eval_dim_384_dot_accuracy": 0.10932323710364411,
248
+ "eval_dim_384_euclidean_accuracy": 0.8906767628963559,
249
+ "eval_dim_384_manhattan_accuracy": 0.8912683388547089,
250
+ "eval_dim_384_max_accuracy": 0.8912683388547089,
251
+ "eval_dim_64_cosine_accuracy": 0.8861807856128727,
252
+ "eval_dim_64_dot_accuracy": 0.11784193090392807,
253
+ "eval_dim_64_euclidean_accuracy": 0.8860624704212021,
254
+ "eval_dim_64_manhattan_accuracy": 0.8861807856128727,
255
+ "eval_dim_64_max_accuracy": 0.8861807856128727,
256
+ "eval_loss": 16.491697311401367,
257
+ "eval_runtime": 112.5812,
258
+ "eval_samples_per_second": 75.075,
259
+ "eval_sequential_score": 0.8861807856128727,
260
+ "eval_steps_per_second": 2.354,
261
+ "step": 350
262
+ },
263
+ {
264
+ "epoch": 2.6924694993689524,
265
+ "grad_norm": 2.6013519763946533,
266
+ "learning_rate": 1.992488554155135e-05,
267
+ "loss": 17.4434,
268
+ "step": 400
269
+ },
270
+ {
271
+ "epoch": 2.6924694993689524,
272
+ "eval_dim_128_cosine_accuracy": 0.8873639375295788,
273
+ "eval_dim_128_dot_accuracy": 0.11512068149550403,
274
+ "eval_dim_128_euclidean_accuracy": 0.8857075248461902,
275
+ "eval_dim_128_manhattan_accuracy": 0.8874822527212494,
276
+ "eval_dim_128_max_accuracy": 0.8874822527212494,
277
+ "eval_dim_256_cosine_accuracy": 0.8861807856128727,
278
+ "eval_dim_256_dot_accuracy": 0.11393752957879792,
279
+ "eval_dim_256_euclidean_accuracy": 0.8868906767628963,
280
+ "eval_dim_256_manhattan_accuracy": 0.8862991008045433,
281
+ "eval_dim_256_max_accuracy": 0.8868906767628963,
282
+ "eval_dim_384_cosine_accuracy": 0.8874822527212494,
283
+ "eval_dim_384_dot_accuracy": 0.1125177472787506,
284
+ "eval_dim_384_euclidean_accuracy": 0.8874822527212494,
285
+ "eval_dim_384_manhattan_accuracy": 0.8865357311878845,
286
+ "eval_dim_384_max_accuracy": 0.8874822527212494,
287
+ "eval_dim_64_cosine_accuracy": 0.8858258400378609,
288
+ "eval_dim_64_dot_accuracy": 0.12068149550402271,
289
+ "eval_dim_64_euclidean_accuracy": 0.8855892096545196,
290
+ "eval_dim_64_manhattan_accuracy": 0.885470894462849,
291
+ "eval_dim_64_max_accuracy": 0.8858258400378609,
292
+ "eval_loss": 16.492637634277344,
293
+ "eval_runtime": 111.0561,
294
+ "eval_samples_per_second": 76.106,
295
+ "eval_sequential_score": 0.8858258400378609,
296
+ "eval_steps_per_second": 2.386,
297
+ "step": 400
298
+ },
299
+ {
300
+ "epoch": 3.0290281867900717,
301
+ "grad_norm": 3.0714638233184814,
302
+ "learning_rate": 1.983554435877128e-05,
303
+ "loss": 17.3278,
304
+ "step": 450
305
+ },
306
+ {
307
+ "epoch": 3.0290281867900717,
308
+ "eval_dim_128_cosine_accuracy": 0.8853525792711784,
309
+ "eval_dim_128_dot_accuracy": 0.1160672030288689,
310
+ "eval_dim_128_euclidean_accuracy": 0.8867723615712257,
311
+ "eval_dim_128_manhattan_accuracy": 0.8855892096545196,
312
+ "eval_dim_128_max_accuracy": 0.8867723615712257,
313
+ "eval_dim_256_cosine_accuracy": 0.8860624704212021,
314
+ "eval_dim_256_dot_accuracy": 0.11429247515380975,
315
+ "eval_dim_256_euclidean_accuracy": 0.885470894462849,
316
+ "eval_dim_256_manhattan_accuracy": 0.8864174159962139,
317
+ "eval_dim_256_max_accuracy": 0.8864174159962139,
318
+ "eval_dim_384_cosine_accuracy": 0.8868906767628963,
319
+ "eval_dim_384_dot_accuracy": 0.11310932323710364,
320
+ "eval_dim_384_euclidean_accuracy": 0.8868906767628963,
321
+ "eval_dim_384_manhattan_accuracy": 0.8867723615712257,
322
+ "eval_dim_384_max_accuracy": 0.8868906767628963,
323
+ "eval_dim_64_cosine_accuracy": 0.8859441552295315,
324
+ "eval_dim_64_dot_accuracy": 0.12091812588736393,
325
+ "eval_dim_64_euclidean_accuracy": 0.884287742546143,
326
+ "eval_dim_64_manhattan_accuracy": 0.8847610033128254,
327
+ "eval_dim_64_max_accuracy": 0.8859441552295315,
328
+ "eval_loss": 16.475650787353516,
329
+ "eval_runtime": 112.3325,
330
+ "eval_samples_per_second": 75.241,
331
+ "eval_sequential_score": 0.8859441552295315,
332
+ "eval_steps_per_second": 2.359,
333
+ "step": 450
334
+ },
335
+ {
336
+ "epoch": 3.3655868742111905,
337
+ "grad_norm": 3.793804407119751,
338
+ "learning_rate": 1.9712017522703764e-05,
339
+ "loss": 17.247,
340
+ "step": 500
341
+ },
342
+ {
343
+ "epoch": 3.3655868742111905,
344
+ "eval_dim_128_cosine_accuracy": 0.8829862754377662,
345
+ "eval_dim_128_dot_accuracy": 0.11831519167061051,
346
+ "eval_dim_128_euclidean_accuracy": 0.8836961665877898,
347
+ "eval_dim_128_manhattan_accuracy": 0.8823946994794132,
348
+ "eval_dim_128_max_accuracy": 0.8836961665877898,
349
+ "eval_dim_256_cosine_accuracy": 0.8840511121628017,
350
+ "eval_dim_256_dot_accuracy": 0.11571225745385708,
351
+ "eval_dim_256_euclidean_accuracy": 0.8841694273544723,
352
+ "eval_dim_256_manhattan_accuracy": 0.8851159488878372,
353
+ "eval_dim_256_max_accuracy": 0.8851159488878372,
354
+ "eval_dim_384_cosine_accuracy": 0.8853525792711784,
355
+ "eval_dim_384_dot_accuracy": 0.11464742072882159,
356
+ "eval_dim_384_euclidean_accuracy": 0.8853525792711784,
357
+ "eval_dim_384_manhattan_accuracy": 0.8862991008045433,
358
+ "eval_dim_384_max_accuracy": 0.8862991008045433,
359
+ "eval_dim_64_cosine_accuracy": 0.8815664931377188,
360
+ "eval_dim_64_dot_accuracy": 0.12434926644581164,
361
+ "eval_dim_64_euclidean_accuracy": 0.88180312352106,
362
+ "eval_dim_64_manhattan_accuracy": 0.88180312352106,
363
+ "eval_dim_64_max_accuracy": 0.88180312352106,
364
+ "eval_loss": 16.47345542907715,
365
+ "eval_runtime": 111.9611,
366
+ "eval_samples_per_second": 75.49,
367
+ "eval_sequential_score": 0.8815664931377188,
368
+ "eval_steps_per_second": 2.367,
369
+ "step": 500
370
+ }
371
+ ],
372
+ "logging_steps": 50,
373
+ "max_steps": 2960,
374
+ "num_input_tokens_seen": 0,
375
+ "num_train_epochs": 20,
376
+ "save_steps": 500,
377
+ "stateful_callbacks": {
378
+ "TrainerControl": {
379
+ "args": {
380
+ "should_epoch_stop": false,
381
+ "should_evaluate": false,
382
+ "should_log": false,
383
+ "should_save": true,
384
+ "should_training_stop": false
385
+ },
386
+ "attributes": {}
387
+ }
388
+ },
389
+ "total_flos": 0.0,
390
+ "train_batch_size": 32,
391
+ "trial_name": null,
392
+ "trial_params": null
393
+ }
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4460a392f1d531aa2fa68babce201b49cf600325531dffe43bcf07ffc8c222fc
3
+ size 5432
bge-small-hotpotwa-matryoshka-fine-tuned-50/checkpoint-500/vocab.txt ADDED
The diff for this file is too large to render. See raw diff