File size: 1,997 Bytes
40702b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: openai/whisper-small.en
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-medical-data
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medical-data
This model is a fine-tuned version of [openai/whisper-small.en](https://huggingface.co./openai/whisper-small.en) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7069
- Wer: 23.3573
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 1.0106 | 4.17 | 100 | 1.1117 | 24.8717 |
| 0.043 | 8.33 | 200 | 0.5784 | 28.0287 |
| 0.0049 | 12.5 | 300 | 0.6418 | 23.7936 |
| 0.001 | 16.67 | 400 | 0.6730 | 23.2290 |
| 0.0005 | 20.83 | 500 | 0.6854 | 23.3573 |
| 0.0004 | 25.0 | 600 | 0.6938 | 23.3316 |
| 0.0003 | 29.17 | 700 | 0.6996 | 23.4343 |
| 0.0003 | 33.33 | 800 | 0.7034 | 23.3830 |
| 0.0002 | 37.5 | 900 | 0.7061 | 23.3573 |
| 0.0002 | 41.67 | 1000 | 0.7069 | 23.3573 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|