File size: 8,427 Bytes
ace98b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
---
language:
  - en
license: apache-2.0
tags:
  - text-generation
  - large-language-model
  - orpo
dataset:
  - jondurbin/truthy-dpo-v0.1
  - AlekseyKorshuk/evol-codealpaca-v1-dpo
  - argilla/distilabel-intel-orca-dpo-pairs
  - argilla/ultrafeedback-binarized-avg-rating-for-dpo-filtered
  - snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset
  - mlabonne/orpo-dpo-mix-40k

base_model:
  - TinyLlama/TinyLlama-1.1B-Chat-v1.0
model-index:
  - name: Coven Tiny 1.1B
    description: "Coven Tiny 1.1B is a derivative of TinyLlama 1.1B Chat, fine-tuned to perform specialized tasks involving deeper understanding and reasoning over context. This model exhibits strong capabilities in both general language understanding and task-specific challenges."
    results:
      - task:
          type: text-generation
          name: Winogrande Challenge
        dataset:
          name: Winogrande
          type: winogrande
          config: winogrande_xl
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: accuracy
            value: 61.17
            name: accuracy
      - task:
          type: text-generation
          name: TruthfulQA Generation
        dataset:
          name: TruthfulQA
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: accuracy
            value: 34.31
            name: accuracy
      - task:
          type: text-generation
          name: PIQA Problem Solving
        dataset:
          name: PIQA
          type: piqa
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: accuracy
            value: 71.06
            name: accuracy
      - task:
          type: text-generation
          name: OpenBookQA Facts
        dataset:
          name: OpenBookQA
          type: openbookqa
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: accuracy
            value: 30.60
            name: accuracy
      - task:
          type: text-generation
          name: MMLU Knowledge Test
        dataset:
          name: MMLU
          type: mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: accuracy
            value: 38.03
            name: accuracy
      - task:
          type: text-generation
          name: Hellaswag Contextual Completions
        dataset:
          name: Hellaswag
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: accuracy
            value: 43.44
            name: accuracy
      - task:
          type: text-generation
          name: GSM8k Mathematical Reasoning
        dataset:
          name: GSM8k
          type: gsm8k
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: accuracy
            value: 14.71
            name: exact match (strict)
          - type: accuracy
            value: 14.63
            name: exact match (flexible)
      - task:
          type: text-generation
          name: BoolQ Question Answering
        dataset:
          name: BoolQ
          type: boolq
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: accuracy
            value: 65.20
            name: accuracy
      - task:
          type: text-generation
          name: ARC Challenge
        dataset:
          name: ARC Challenge
          type: ai2_arc
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: accuracy
            value: 34.81
            name: accuracy
---



# 🤏 Coven Tiny 1.1B 32K ORPO


Coven Tiny 1.1B 32K is an improved iteration of TinyLlama-1.1B-Chat-v1.0, refined to expand processing capabilities and refine language model preferences. This model includes a significantly increased context limit of 32K tokens, allowing for more extensive data processing and understanding of complex language scenarios. In addition, Coven Tiny 1.1B 32K uses the innovative ORPO (Monolithic Preference Optimization without Reference Model) technique. ORPO simplifies the fine-tuning process by directly optimizing the odds ratio to distinguish between favorable and unfavorable generation styles, effectively improving model performance without the need for an additional preference alignment step. 

## Model Details

* **Model name**: Coven Tiny 1.1B 32K ORPO alpha
* **Fine-tuned by**: raidhon
* **Base model**: [TinyLlama-1.1B-Chat-v1.0](https://huggingface.co./TinyLlama/TinyLlama-1.1B-Chat-v1.0)
* **Parameters**: 1.1B
* **Context**: 32K
* **Language(s)**: Multilingual
* **License**: Apache2.0



### Eval


| Task                | Model                 | Metric         | Value    | Change (%)      |
|---------------------|-----------------------|----------------|----------|-----------------|
| Winogrande          | TinyLlama 1.1B Chat   | Accuracy       | 61.56%   | -               |
|                     | Coven Tiny 1.1B       | Accuracy       | 61.17%   | -0.63%          |
| TruthfulQA          | TinyLlama 1.1B Chat   | Accuracy       | 30.43%   | -               |
|                     | Coven Tiny 1.1B       | Accuracy       | 34.31%   | +12.75%         |
| PIQA                | TinyLlama 1.1B Chat   | Accuracy       | 74.10%   | -               |
|                     | Coven Tiny 1.1B       | Accuracy       | 71.06%   | -4.10%          |
| OpenBookQA          | TinyLlama 1.1B Chat   | Accuracy       | 27.40%   | -               |
|                     | Coven Tiny 1.1B       | Accuracy       | 30.60%   | +11.68%         |
| MMLU                | TinyLlama 1.1B Chat   | Accuracy       | 24.31%   | -               |
|                     | Coven Tiny 1.1B       | Accuracy       | 38.03%   | +56.44%         |
| Hellaswag           | TinyLlama 1.1B Chat   | Accuracy       | 45.69%   | -               |
|                     | Coven Tiny 1.1B       | Accuracy       | 43.44%   | -4.92%          |
| GSM8K (Strict)      | TinyLlama 1.1B Chat   | Exact Match    | 1.82%    | -               |
|                     | Coven Tiny 1.1B       | Exact Match    | 14.71%   | +708.24%        |
| GSM8K (Flexible)    | TinyLlama 1.1B Chat   | Exact Match    | 2.65%    | -               |
|                     | Coven Tiny 1.1B       | Exact Match    | 14.63%   | +452.08%        |
| BoolQ               | TinyLlama 1.1B Chat   | Accuracy       | 58.69%   | -               |
|                     | Coven Tiny 1.1B       | Accuracy       | 65.20%   | +11.09%         |
| ARC Easy            | TinyLlama 1.1B Chat   | Accuracy       | 66.54%   | -               |
|                     | Coven Tiny 1.1B       | Accuracy       | 57.24%   | -13.98%         |
| ARC Challenge       | TinyLlama 1.1B Chat   | Accuracy       | 34.13%   | -               |
|                     | Coven Tiny 1.1B       | Accuracy       | 34.81%   | +1.99%          |
| Humaneval           | TinyLlama 1.1B Chat   | Pass@1         | 10.98%   | -               |
|                     | Coven Tiny 1.1B       | Pass@1         | 10.37%   | -5.56%          |
| Drop                | TinyLlama 1.1B Chat   | Score          | 16.02%   | -               |
|                     | Coven Tiny 1.1B       | Score          | 16.36%   | +2.12%          |
| BBH                 | Coven Tiny 1.1B       | Average        | 29.02%   | -               |



## 💻 Usage

```python
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate

import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="raidhon/coven_tiny_1.1b_32k_orpo_alpha", torch_dtype=torch.bfloat16, device_map="auto")

messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who always responds in the style of a pirate",
    },
    {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=2048, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```