--- base_model: microsoft/Phi-3-mini-4k-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: phi-3-mini-LoRA results: [] --- # phi-3-mini-LoRA This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co./microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4537 | 0.2052 | 100 | 1.2281 | | 1.0408 | 0.4105 | 200 | 0.9405 | | 0.915 | 0.6157 | 300 | 0.9088 | | 0.9159 | 0.8209 | 400 | 0.8933 | | 0.8925 | 1.0262 | 500 | 0.8809 | | 0.8837 | 1.2314 | 600 | 0.8712 | | 0.8753 | 1.4366 | 700 | 0.8604 | | 0.8701 | 1.6419 | 800 | 0.8537 | | 0.8755 | 1.8471 | 900 | 0.8498 | | 0.8603 | 2.0523 | 1000 | 0.8460 | | 0.8669 | 2.2576 | 1100 | 0.8434 | | 0.8558 | 2.4628 | 1200 | 0.8410 | | 0.8482 | 2.6680 | 1300 | 0.8395 | | 0.844 | 2.8733 | 1400 | 0.8384 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1