File size: 4,197 Bytes
e25135f
 
f4e30d3
 
e25135f
 
 
f4e30d3
e25135f
f4e30d3
 
e25135f
 
 
 
 
f4e30d3
e25135f
f4e30d3
e25135f
f4e30d3
e25135f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e30d3
 
 
e25135f
f4e30d3
 
e25135f
 
f4e30d3
 
e25135f
 
 
 
f4e30d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e25135f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---

library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
datasets:
- common_voice_13_0
model-index:
- name: ABG_TTS
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ABG_TTS



This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co./microsoft/speecht5_tts) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5066

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 4

- eval_batch_size: 2

- seed: 42

- gradient_accumulation_steps: 8

- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100

- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.7566        | 0.3972  | 100  | 0.6804          |
| 0.6819        | 0.7944  | 200  | 0.6558          |
| 0.6512        | 1.1917  | 300  | 0.6097          |
| 0.6315        | 1.5889  | 400  | 0.5807          |
| 0.6092        | 1.9861  | 500  | 0.5860          |
| 0.619         | 2.3833  | 600  | 0.5818          |
| 0.6099        | 2.7805  | 700  | 0.5627          |
| 0.5908        | 3.1778  | 800  | 0.5849          |
| 0.5887        | 3.5750  | 900  | 0.5505          |
| 0.585         | 3.9722  | 1000 | 0.5505          |
| 0.5773        | 4.3694  | 1100 | 0.5550          |
| 0.5708        | 4.7666  | 1200 | 0.5419          |
| 0.5664        | 5.1639  | 1300 | 0.5425          |
| 0.559         | 5.5611  | 1400 | 0.5422          |
| 0.5605        | 5.9583  | 1500 | 0.5289          |
| 0.5641        | 6.3555  | 1600 | 0.5327          |
| 0.5507        | 6.7527  | 1700 | 0.5443          |
| 0.5622        | 7.1500  | 1800 | 0.5346          |
| 0.5613        | 7.5472  | 1900 | 0.5355          |
| 0.5469        | 7.9444  | 2000 | 0.5325          |
| 0.5523        | 8.3416  | 2100 | 0.5267          |
| 0.5477        | 8.7388  | 2200 | 0.5186          |
| 0.5466        | 9.1360  | 2300 | 0.5192          |
| 0.5383        | 9.5333  | 2400 | 0.5179          |
| 0.5332        | 9.9305  | 2500 | 0.5165          |
| 0.5351        | 10.3277 | 2600 | 0.5148          |
| 0.5377        | 10.7249 | 2700 | 0.5186          |
| 0.5295        | 11.1221 | 2800 | 0.5196          |
| 0.5263        | 11.5194 | 2900 | 0.5133          |
| 0.5301        | 11.9166 | 3000 | 0.5138          |
| 0.5209        | 12.3138 | 3100 | 0.5143          |
| 0.5205        | 12.7110 | 3200 | 0.5103          |
| 0.5132        | 13.1082 | 3300 | 0.5157          |
| 0.5194        | 13.5055 | 3400 | 0.5085          |
| 0.5177        | 13.9027 | 3500 | 0.5110          |
| 0.5156        | 14.2999 | 3600 | 0.5100          |
| 0.5082        | 14.6971 | 3700 | 0.5098          |
| 0.5179        | 15.0943 | 3800 | 0.5053          |
| 0.5165        | 15.4916 | 3900 | 0.5064          |
| 0.5036        | 15.8888 | 4000 | 0.5058          |
| 0.504         | 16.2860 | 4100 | 0.5098          |
| 0.5119        | 16.6832 | 4200 | 0.5061          |
| 0.5017        | 17.0804 | 4300 | 0.5107          |
| 0.5066        | 17.4777 | 4400 | 0.5074          |
| 0.5071        | 17.8749 | 4500 | 0.5088          |
| 0.5119        | 18.2721 | 4600 | 0.5053          |
| 0.5032        | 18.6693 | 4700 | 0.5064          |
| 0.5014        | 19.0665 | 4800 | 0.5089          |
| 0.5001        | 19.4638 | 4900 | 0.5078          |
| 0.4926        | 19.8610 | 5000 | 0.5066          |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.3.0+cu118
- Datasets 3.0.0
- Tokenizers 0.19.1