--- library_name: diffusers pipeline_tag: text-to-image inference: true base_model: stabilityai/stable-diffusion-2-1 --- # DPO LoRA Stable Diffusion v2-1 Model trained with LoRA implementation of Diffusion DPO Read more [here](https://github.com/huggingface/diffusers/tree/main/examples/research_projects/diffusion_dpo) Base Model: https://huggingface.co./stabilityai/stable-diffusion-2-1 ## Running with [🧨 diffusers library](https://github.com/huggingface/diffusers) ```python from diffusers import DiffusionPipeline from diffusers.utils import make_image_grid import torch pipe = DiffusionPipeline.from_pretrained( "stabilityai/sd-turbo", # SD Turbo is a destilled version of Stable Diffusion 2.1 # "stabilityai/stable-diffusion-2-1", # for the original stable diffusion 2.1 model torch_dtype=torch.float16, variant="fp16" ) pipe.to("cuda") pipe.load_lora_weights("radames/sd-21-DPO-LoRA", adapter_name="dpo-lora-sd21") pipe.set_adapters(["dpo-lora-sd21"], adapter_weights=[1.0]) # you can play with adapter_weights to increase the effect of the LoRA model seed = 123123 prompt = "portrait headshot professional of elon musk" negative_prompt = "3d render, cartoon, drawing, art, low light" generator = torch.Generator().manual_seed(seed) images = pipe( prompt=prompt, negative_prompt=negative_prompt, width=512, height=512, num_inference_steps=2, generator=generator, guidance_scale=1.0, num_images_per_prompt=4 ).images make_image_grid(images, 1, 4) ``` ## Guidance Scale vs LoRA weights ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6064e095abd8d3692e3e2ed6/DoSPw5PiShRckeqjVperr.jpeg) ## Examples Left Withoud DPO right with DPO LoRA