import torch from torch import Tensor from transformers import AutoTokenizer, AutoModel from typing import List import os device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class PreTrainedPipeline(): def __init__(self, path=""): # load the optimized model self.tokenizer = AutoTokenizer.from_pretrained(path) self.model = AutoModel.from_pretrained(path) self.model.eval() self.model = self.model.to(device) def __call__(self, inputs: str) -> List[float]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`dict`:. The object returned should be a dict like {"feature_vector": [0.6331314444541931,0.8802216053009033,...,-0.7866355180740356,]} containing : - "feature_vector": A list of floats corresponding to the image embedding. """ batch_dict = self.tokenizer([inputs], max_length=512, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): outputs = self.model(**batch_dict) embeddings = self.average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) return embeddings.cpu().numpy().tolist() def average_pool(self, last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill( ~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]