radames commited on
Commit
ca62d7f
·
1 Parent(s): ed44ea7

custom pipeline

Browse files
Files changed (2) hide show
  1. pipeline.py +40 -0
  2. requirements.txt +2 -0
pipeline.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import Tensor
3
+ from transformers import AutoTokenizer, AutoModel
4
+ from typing import List
5
+ import os
6
+
7
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
8
+
9
+
10
+ class PreTrainedPipeline():
11
+ def __init__(self, path=""):
12
+ # load the optimized model
13
+ self.model_path = os.path.join("", '.')
14
+ self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
15
+ self.model = AutoModel.from_pretrained(self.model_path)
16
+ self.model.eval()
17
+ self.model = self.model.to(device)
18
+
19
+ def __call__(self, inputs: str) -> List[float]:
20
+ """
21
+ Args:
22
+ data (:obj:):
23
+ includes the input data and the parameters for the inference.
24
+ Return:
25
+ A :obj:`dict`:. The object returned should be a dict like {"feature_vector": [0.6331314444541931,0.8802216053009033,...,-0.7866355180740356,]} containing :
26
+ - "feature_vector": A list of floats corresponding to the image embedding.
27
+ """
28
+
29
+ batch_dict = self.tokenizer(inputs, max_length=512,
30
+ padding=True, truncation=True, return_tensors='pt')
31
+ with torch.no_grad():
32
+ outputs = self.model(**batch_dict)
33
+ embeddings = self.average_pool(outputs.last_hidden_state,
34
+ batch_dict['attention_mask'])
35
+ return embeddings.cpu().numpy().tolist()
36
+
37
+ def average_pool(self, last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
38
+ last_hidden = last_hidden_states.masked_fill(
39
+ ~attention_mask[..., None].bool(), 0.0)
40
+ return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ transformers
2
+ torch