--- library_name: transformers license: apache-2.0 base_model: timm/resnet18.a1_in1k tags: - image-classification - vision - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-beans results: [] --- # vit-base-beans This model is a fine-tuned version of [timm/resnet18.a1_in1k](https://huggingface.co./timm/resnet18.a1_in1k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.6875 - Accuracy: 0.8647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 1.0864 | 1.0 | 130 | 0.4286 | 1.0878 | | 1.0629 | 2.0 | 260 | 0.5489 | 1.0594 | | 1.0434 | 3.0 | 390 | 0.6767 | 1.0230 | | 1.0214 | 4.0 | 520 | 0.6767 | 0.9965 | | 1.0026 | 5.0 | 650 | 0.7444 | 0.9569 | | 0.9753 | 6.0 | 780 | 0.7820 | 0.9288 | | 0.9252 | 7.0 | 910 | 0.7970 | 0.8875 | | 0.9192 | 8.0 | 1040 | 0.8120 | 0.8506 | | 0.9008 | 9.0 | 1170 | 0.8045 | 0.8338 | | 0.8079 | 10.0 | 1300 | 0.8421 | 0.8104 | | 0.8332 | 11.0 | 1430 | 0.8346 | 0.7806 | | 0.8103 | 12.0 | 1560 | 0.8346 | 0.7586 | | 0.8149 | 13.0 | 1690 | 0.8421 | 0.7571 | | 0.8186 | 14.0 | 1820 | 0.8271 | 0.7540 | | 0.7929 | 15.0 | 1950 | 0.8120 | 0.7412 | | 0.774 | 16.0 | 2080 | 0.7370 | 0.8496 | | 0.7613 | 17.0 | 2210 | 0.7059 | 0.8496 | | 0.7778 | 18.0 | 2340 | 0.6930 | 0.8271 | | 0.8081 | 19.0 | 2470 | 0.6890 | 0.8647 | | 0.7916 | 20.0 | 2600 | 0.6875 | 0.8647 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.4.1+cu118 - Datasets 2.21.0 - Tokenizers 0.20.0