File size: 12,625 Bytes
02f06a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
base_model: PekingU/rtdetr_r50vd_coco_o365
tags:
- generated_from_trainer
model-index:
- name: rtdetr-r50-cppe5-finetune-v3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# rtdetr-r50-cppe5-finetune-v3

This model is a fine-tuned version of [PekingU/rtdetr_r50vd_coco_o365](https://huggingface.co./PekingU/rtdetr_r50vd_coco_o365) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 10.9472
- Map: 0.3704
- Map 50: 0.5798
- Map 75: 0.3751
- Map Small: 0.1898
- Map Medium: 0.3794
- Map Large: 0.4798
- Mar 1: 0.3002
- Mar 10: 0.5262
- Mar 100: 0.6137
- Mar Small: 0.4445
- Mar Medium: 0.5564
- Mar Large: 0.8118
- Map Coverall: 0.4594
- Mar 100 Coverall: 0.6795
- Map Face Shield: 0.4864
- Mar 100 Face Shield: 0.6412
- Map Gloves: 0.3727
- Mar 100 Gloves: 0.6322
- Map Goggles: 0.1661
- Mar 100 Goggles: 0.4586
- Map Mask: 0.3674
- Mar 100 Mask: 0.6569

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------:|:----------------:|:---------------:|:-------------------:|:----------:|:--------------:|:-----------:|:---------------:|:--------:|:------------:|
| No log        | 1.0   | 107  | 113.2495        | 0.011  | 0.0228 | 0.0089 | 0.0002    | 0.0063     | 0.0248    | 0.0285 | 0.1032 | 0.1933  | 0.0311    | 0.1471     | 0.3682    | 0.053        | 0.5482           | 0.0002          | 0.1316              | 0.0001     | 0.0379         | 0.0         | 0.0169          | 0.0016   | 0.232        |
| No log        | 2.0   | 214  | 18.6938         | 0.1584 | 0.2939 | 0.1442 | 0.0773    | 0.1147     | 0.2221    | 0.1645 | 0.3785 | 0.4702  | 0.303     | 0.4358     | 0.7243    | 0.4389       | 0.6694           | 0.0065          | 0.4266              | 0.0819     | 0.4272         | 0.0187      | 0.3585          | 0.2462   | 0.4693       |
| No log        | 3.0   | 321  | 12.9839         | 0.226  | 0.3923 | 0.2176 | 0.1203    | 0.1804     | 0.4483    | 0.2371 | 0.427  | 0.5082  | 0.3272    | 0.4915     | 0.7484    | 0.4397       | 0.668            | 0.0681          | 0.4608              | 0.1557     | 0.4585         | 0.1696      | 0.4662          | 0.2969   | 0.4876       |
| No log        | 4.0   | 428  | 12.4463         | 0.215  | 0.4188 | 0.1966 | 0.1012    | 0.1805     | 0.4172    | 0.2229 | 0.4095 | 0.4812  | 0.2833    | 0.4737     | 0.6995    | 0.3622       | 0.6716           | 0.1302          | 0.4975              | 0.1221     | 0.4205         | 0.1687      | 0.3754          | 0.2916   | 0.4409       |
| 83.7659       | 5.0   | 535  | 12.3391         | 0.2336 | 0.465  | 0.2029 | 0.1382    | 0.2226     | 0.5186    | 0.2355 | 0.4423 | 0.5212  | 0.3433    | 0.5183     | 0.7393    | 0.2065       | 0.6703           | 0.2304          | 0.5051              | 0.1915     | 0.45           | 0.2376      | 0.4785          | 0.3021   | 0.5022       |
| 83.7659       | 6.0   | 642  | 12.3727         | 0.2059 | 0.3923 | 0.1857 | 0.1211    | 0.2121     | 0.4664    | 0.2274 | 0.4292 | 0.5156  | 0.3612    | 0.504      | 0.7148    | 0.1794       | 0.6694           | 0.2126          | 0.5329              | 0.1643     | 0.4455         | 0.1688      | 0.42            | 0.3042   | 0.5102       |
| 83.7659       | 7.0   | 749  | 12.7240         | 0.2058 | 0.41   | 0.1759 | 0.1217    | 0.2158     | 0.4525    | 0.2295 | 0.4086 | 0.4943  | 0.3464    | 0.4782     | 0.7071    | 0.2036       | 0.6077           | 0.2208          | 0.5013              | 0.1332     | 0.4201         | 0.2176      | 0.4323          | 0.2539   | 0.5102       |
| 83.7659       | 8.0   | 856  | 13.0090         | 0.2015 | 0.3831 | 0.1849 | 0.1056    | 0.2061     | 0.4551    | 0.2227 | 0.4194 | 0.5332  | 0.3719    | 0.5245     | 0.7451    | 0.2041       | 0.6482           | 0.1889          | 0.5747              | 0.1627     | 0.4692         | 0.1792      | 0.4462          | 0.2727   | 0.5276       |
| 83.7659       | 9.0   | 963  | 12.9929         | 0.2136 | 0.4059 | 0.1897 | 0.1307    | 0.1946     | 0.4823    | 0.2372 | 0.4132 | 0.5178  | 0.3559    | 0.5187     | 0.7195    | 0.2503       | 0.6248           | 0.22            | 0.5177              | 0.2002     | 0.4799         | 0.1888      | 0.46            | 0.2088   | 0.5067       |
| 12.788        | 10.0  | 1070 | 13.2438         | 0.1824 | 0.3375 | 0.1626 | 0.1       | 0.1911     | 0.4538    | 0.2061 | 0.3935 | 0.5026  | 0.3561    | 0.5017     | 0.6963    | 0.176        | 0.5644           | 0.1629          | 0.5228              | 0.1649     | 0.4741         | 0.1767      | 0.4769          | 0.2312   | 0.4747       |
| 12.788        | 11.0  | 1177 | 13.0890         | 0.2074 | 0.3885 | 0.1917 | 0.0937    | 0.1761     | 0.4555    | 0.2372 | 0.4106 | 0.508   | 0.3414    | 0.4956     | 0.7394    | 0.353        | 0.6599           | 0.182           | 0.4924              | 0.1565     | 0.4924         | 0.1524      | 0.4092          | 0.1931   | 0.4862       |
| 12.788        | 12.0  | 1284 | 12.2541         | 0.2428 | 0.44   | 0.2248 | 0.1213    | 0.202      | 0.5041    | 0.2484 | 0.4125 | 0.4938  | 0.3264    | 0.4726     | 0.7146    | 0.4213       | 0.6428           | 0.2319          | 0.4861              | 0.1937     | 0.4844         | 0.1301      | 0.32            | 0.2371   | 0.536        |
| 12.788        | 13.0  | 1391 | 13.4175         | 0.1572 | 0.2948 | 0.1408 | 0.0731    | 0.1404     | 0.4109    | 0.208  | 0.3659 | 0.4667  | 0.3022    | 0.4576     | 0.6952    | 0.2418       | 0.6063           | 0.1828          | 0.4835              | 0.1402     | 0.4826         | 0.0575      | 0.2754          | 0.1637   | 0.4858       |
| 12.788        | 14.0  | 1498 | 13.0720         | 0.2018 | 0.371  | 0.1912 | 0.0984    | 0.1543     | 0.4649    | 0.2229 | 0.3936 | 0.4802  | 0.2958    | 0.4639     | 0.715     | 0.3978       | 0.6392           | 0.2001          | 0.4734              | 0.1828     | 0.4884         | 0.077       | 0.3015          | 0.1512   | 0.4987       |
| 10.7992       | 15.0  | 1605 | 13.1509         | 0.2093 | 0.3882 | 0.1946 | 0.1149    | 0.1733     | 0.4644    | 0.2398 | 0.4148 | 0.4899  | 0.3288    | 0.4689     | 0.696     | 0.3568       | 0.6099           | 0.2329          | 0.5025              | 0.1722     | 0.4902         | 0.1078      | 0.3415          | 0.1767   | 0.5053       |
| 10.7992       | 16.0  | 1712 | 13.5416         | 0.1865 | 0.3502 | 0.1691 | 0.0943    | 0.1519     | 0.4479    | 0.2219 | 0.3868 | 0.4732  | 0.3295    | 0.4422     | 0.6977    | 0.3045       | 0.5698           | 0.2009          | 0.4949              | 0.1642     | 0.4728         | 0.0954      | 0.3554          | 0.1676   | 0.4729       |
| 10.7992       | 17.0  | 1819 | 13.8027         | 0.1419 | 0.2558 | 0.134  | 0.0598    | 0.1091     | 0.3792    | 0.2014 | 0.3602 | 0.4583  | 0.2925    | 0.4245     | 0.6809    | 0.2747       | 0.6063           | 0.1398          | 0.4709              | 0.1221     | 0.4504         | 0.0503      | 0.2877          | 0.1223   | 0.476        |
| 10.7992       | 18.0  | 1926 | 13.1241         | 0.205  | 0.389  | 0.1896 | 0.1006    | 0.1856     | 0.4619    | 0.2273 | 0.3813 | 0.4531  | 0.2848    | 0.4267     | 0.6944    | 0.3898       | 0.5995           | 0.2296          | 0.4848              | 0.1864     | 0.442          | 0.0754      | 0.2892          | 0.1436   | 0.4498       |
| 9.7939        | 19.0  | 2033 | 13.4709         | 0.2089 | 0.3828 | 0.1894 | 0.1018    | 0.1797     | 0.4627    | 0.2357 | 0.4    | 0.4783  | 0.3083    | 0.4537     | 0.6973    | 0.4201       | 0.6414           | 0.2105          | 0.5101              | 0.1717     | 0.4598         | 0.115       | 0.3215          | 0.1273   | 0.4587       |
| 9.7939        | 20.0  | 2140 | 13.6381         | 0.1755 | 0.3379 | 0.1459 | 0.0909    | 0.1501     | 0.4149    | 0.2176 | 0.3734 | 0.441   | 0.2658    | 0.4223     | 0.6946    | 0.3267       | 0.5896           | 0.1912          | 0.4861              | 0.1899     | 0.4446         | 0.0553      | 0.24            | 0.1146   | 0.4449       |
| 9.7939        | 21.0  | 2247 | 13.6187         | 0.1785 | 0.3454 | 0.159  | 0.0906    | 0.158      | 0.41      | 0.2274 | 0.3754 | 0.4539  | 0.2919    | 0.4327     | 0.6825    | 0.322        | 0.582            | 0.1915          | 0.4861              | 0.1896     | 0.4558         | 0.0585      | 0.2877          | 0.1307   | 0.4578       |
| 9.7939        | 22.0  | 2354 | 13.6789         | 0.1736 | 0.3213 | 0.1547 | 0.0804    | 0.1572     | 0.3997    | 0.2114 | 0.3971 | 0.4766  | 0.3206    | 0.4618     | 0.7021    | 0.3437       | 0.5995           | 0.2031          | 0.5215              | 0.1468     | 0.4647         | 0.0694      | 0.3477          | 0.1053   | 0.4493       |
| 9.7939        | 23.0  | 2461 | 13.5973         | 0.1853 | 0.3484 | 0.163  | 0.0873    | 0.1661     | 0.4546    | 0.2201 | 0.3794 | 0.4493  | 0.2877    | 0.4317     | 0.6857    | 0.3301       | 0.5847           | 0.2031          | 0.4937              | 0.1784     | 0.4317         | 0.0745      | 0.2938          | 0.1405   | 0.4427       |
| 9.0938        | 24.0  | 2568 | 13.2147         | 0.2232 | 0.4117 | 0.2114 | 0.1183    | 0.1953     | 0.4989    | 0.2347 | 0.3911 | 0.4575  | 0.3023    | 0.4273     | 0.6881    | 0.3994       | 0.6032           | 0.204           | 0.4734              | 0.2114     | 0.4621         | 0.1332      | 0.3062          | 0.1683   | 0.4427       |
| 9.0938        | 25.0  | 2675 | 13.4741         | 0.183  | 0.3428 | 0.1701 | 0.0874    | 0.1512     | 0.4309    | 0.2035 | 0.3643 | 0.4371  | 0.2686    | 0.4134     | 0.6784    | 0.3489       | 0.5842           | 0.1923          | 0.4443              | 0.1939     | 0.4469         | 0.0618      | 0.2938          | 0.1183   | 0.4164       |
| 9.0938        | 26.0  | 2782 | 13.6609         | 0.1955 | 0.3825 | 0.1691 | 0.1002    | 0.1798     | 0.4468    | 0.2164 | 0.3665 | 0.4337  | 0.2749    | 0.4048     | 0.6729    | 0.3661       | 0.5761           | 0.2018          | 0.4392              | 0.1914     | 0.4393         | 0.098       | 0.2954          | 0.1204   | 0.4187       |
| 9.0938        | 27.0  | 2889 | 13.5787         | 0.2059 | 0.384  | 0.1917 | 0.1021    | 0.1888     | 0.4571    | 0.224  | 0.3871 | 0.4541  | 0.2992    | 0.4273     | 0.6842    | 0.3905       | 0.5806           | 0.2016          | 0.4835              | 0.1938     | 0.45           | 0.1011      | 0.3092          | 0.1423   | 0.4471       |
| 9.0938        | 28.0  | 2996 | 13.2892         | 0.2043 | 0.3784 | 0.192  | 0.099     | 0.1847     | 0.4577    | 0.2276 | 0.386  | 0.456   | 0.3049    | 0.4245     | 0.6931    | 0.3972       | 0.5991           | 0.1786          | 0.4797              | 0.2112     | 0.4567         | 0.0698      | 0.2938          | 0.1646   | 0.4507       |
| 8.5991        | 29.0  | 3103 | 13.5481         | 0.2103 | 0.3954 | 0.197  | 0.11      | 0.1973     | 0.4571    | 0.225  | 0.3865 | 0.4592  | 0.3234    | 0.4292     | 0.6822    | 0.3794       | 0.5748           | 0.202           | 0.4823              | 0.2086     | 0.4616         | 0.1024      | 0.3185          | 0.1591   | 0.4591       |
| 8.5991        | 30.0  | 3210 | 13.5758         | 0.2024 | 0.3781 | 0.186  | 0.1041    | 0.1897     | 0.4491    | 0.2214 | 0.3882 | 0.46    | 0.3184    | 0.4341     | 0.6808    | 0.3815       | 0.5779           | 0.1844          | 0.4734              | 0.2072     | 0.458          | 0.0877      | 0.3323          | 0.1511   | 0.4582       |


### Framework versions

- Transformers 4.42.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1