Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ tags:
|
|
14 |
|
15 |
XLSR is designed for lightweight real-time upscaling of images.
|
16 |
|
17 |
-
This model is an implementation of XLSR found [here](
|
18 |
This repository provides scripts to run XLSR on Qualcomm® devices.
|
19 |
More details on model performance across various devices, can be found
|
20 |
[here](https://aihub.qualcomm.com/models/xlsr).
|
@@ -29,15 +29,32 @@ More details on model performance across various devices, can be found
|
|
29 |
- Number of parameters: 22.0K
|
30 |
- Model size: 92.7 KB
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
|
35 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
-
| ---|---|---|---|---|---|---|---|
|
37 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 2.483 ms | 0 - 69 MB | FP16 | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite)
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.448 ms | 0 - 3 MB | FP16 | NPU | [XLSR.so](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.so)
|
39 |
-
|
40 |
-
|
41 |
|
42 |
## Installation
|
43 |
|
@@ -92,16 +109,16 @@ device. This script does the following:
|
|
92 |
```bash
|
93 |
python -m qai_hub_models.models.xlsr.export
|
94 |
```
|
95 |
-
|
96 |
```
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
105 |
```
|
106 |
|
107 |
|
@@ -200,15 +217,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
200 |
Get more details on XLSR's performance across various devices [here](https://aihub.qualcomm.com/models/xlsr).
|
201 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
202 |
|
|
|
203 |
## License
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
207 |
|
208 |
## References
|
209 |
* [Extremely Lightweight Quantization Robust Real-Time Single-Image Super Resolution for Mobile Devices](https://arxiv.org/abs/2105.10288)
|
210 |
* [Source Model Implementation](https://github.com/quic/aimet-model-zoo/tree/develop/aimet_zoo_torch/xlsr)
|
211 |
|
|
|
|
|
212 |
## Community
|
213 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
214 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
|
|
14 |
|
15 |
XLSR is designed for lightweight real-time upscaling of images.
|
16 |
|
17 |
+
This model is an implementation of XLSR found [here]({source_repo}).
|
18 |
This repository provides scripts to run XLSR on Qualcomm® devices.
|
19 |
More details on model performance across various devices, can be found
|
20 |
[here](https://aihub.qualcomm.com/models/xlsr).
|
|
|
29 |
- Number of parameters: 22.0K
|
30 |
- Model size: 92.7 KB
|
31 |
|
32 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
33 |
+
|---|---|---|---|---|---|---|---|---|
|
34 |
+
| XLSR | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 2.58 ms | 0 - 9 MB | FP16 | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
|
35 |
+
| XLSR | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.375 ms | 0 - 3 MB | FP16 | NPU | [XLSR.so](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.so) |
|
36 |
+
| XLSR | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.509 ms | 0 - 2 MB | FP16 | NPU | [XLSR.onnx](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.onnx) |
|
37 |
+
| XLSR | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 1.793 ms | 0 - 24 MB | FP16 | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
|
38 |
+
| XLSR | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.08 ms | 0 - 14 MB | FP16 | NPU | [XLSR.so](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.so) |
|
39 |
+
| XLSR | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 1.084 ms | 0 - 23 MB | FP16 | NPU | [XLSR.onnx](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.onnx) |
|
40 |
+
| XLSR | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 2.467 ms | 0 - 1 MB | FP16 | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
|
41 |
+
| XLSR | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.359 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
|
42 |
+
| XLSR | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 2.551 ms | 0 - 88 MB | FP16 | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
|
43 |
+
| XLSR | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.344 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
|
44 |
+
| XLSR | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 2.6 ms | 2 - 3 MB | FP16 | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
|
45 |
+
| XLSR | SA8775 (Proxy) | SA8775P Proxy | QNN | 1.364 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
|
46 |
+
| XLSR | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 2.451 ms | 0 - 31 MB | FP16 | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
|
47 |
+
| XLSR | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.341 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
|
48 |
+
| XLSR | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 3.255 ms | 6 - 30 MB | FP16 | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
|
49 |
+
| XLSR | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.541 ms | 0 - 14 MB | FP16 | NPU | Use Export Script |
|
50 |
+
| XLSR | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 1.913 ms | 0 - 16 MB | FP16 | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite) |
|
51 |
+
| XLSR | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.686 ms | 0 - 9 MB | FP16 | NPU | Use Export Script |
|
52 |
+
| XLSR | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 1.057 ms | 0 - 15 MB | FP16 | NPU | [XLSR.onnx](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.onnx) |
|
53 |
+
| XLSR | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.5 ms | 0 - 0 MB | FP16 | NPU | Use Export Script |
|
54 |
+
| XLSR | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.516 ms | 9 - 9 MB | FP16 | NPU | [XLSR.onnx](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.onnx) |
|
55 |
|
56 |
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
## Installation
|
60 |
|
|
|
109 |
```bash
|
110 |
python -m qai_hub_models.models.xlsr.export
|
111 |
```
|
|
|
112 |
```
|
113 |
+
Profiling Results
|
114 |
+
------------------------------------------------------------
|
115 |
+
XLSR
|
116 |
+
Device : Samsung Galaxy S23 (13)
|
117 |
+
Runtime : TFLITE
|
118 |
+
Estimated inference time (ms) : 2.6
|
119 |
+
Estimated peak memory usage (MB): [0, 9]
|
120 |
+
Total # Ops : 16
|
121 |
+
Compute Unit(s) : NPU (13 ops) CPU (3 ops)
|
122 |
```
|
123 |
|
124 |
|
|
|
217 |
Get more details on XLSR's performance across various devices [here](https://aihub.qualcomm.com/models/xlsr).
|
218 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
219 |
|
220 |
+
|
221 |
## License
|
222 |
+
* The license for the original implementation of XLSR can be found [here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
|
223 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
224 |
+
|
225 |
+
|
226 |
|
227 |
## References
|
228 |
* [Extremely Lightweight Quantization Robust Real-Time Single-Image Super Resolution for Mobile Devices](https://arxiv.org/abs/2105.10288)
|
229 |
* [Source Model Implementation](https://github.com/quic/aimet-model-zoo/tree/develop/aimet_zoo_torch/xlsr)
|
230 |
|
231 |
+
|
232 |
+
|
233 |
## Community
|
234 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
235 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|