qaihm-bot commited on
Commit
1277a33
·
verified ·
1 Parent(s): f31a3a9

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +16 -10
README.md CHANGED
@@ -24,16 +24,19 @@ More details on model performance across various devices, can be found
24
 
25
  - **Model Type:** Super resolution
26
  - **Model Stats:**
27
- - Model checkpoint: xlsr_4x_checkpoint_float32
28
- - Input resolution: 128x128
29
- - Number of parameters: 28.0K
30
- - Model size: 116 KB
 
 
31
 
32
 
33
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
34
  | ---|---|---|---|---|---|---|---|
35
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 2.487 ms | 0 - 16 MB | FP16 | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite)
36
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.371 ms | 0 - 3 MB | FP16 | NPU | [XLSR.so](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.so)
 
37
 
38
 
39
  ## Installation
@@ -94,15 +97,17 @@ python -m qai_hub_models.models.xlsr.export
94
  Profile Job summary of XLSR
95
  --------------------------------------------------
96
  Device: Snapdragon X Elite CRD (11)
97
- Estimated Inference Time: 3.62 ms
98
- Estimated Peak Memory Range: 0.20-0.20 MB
99
  Compute Units: NPU (21) | Total (21)
100
 
101
 
102
  ```
 
 
103
  ## How does this work?
104
 
105
- This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/XLSR/export.py)
106
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
107
  on-device. Lets go through each step below in detail:
108
 
@@ -180,6 +185,7 @@ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
180
 
181
 
182
 
 
183
  ## Deploying compiled model to Android
184
 
185
 
@@ -201,7 +207,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
201
  ## License
202
  - The license for the original implementation of XLSR can be found
203
  [here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
204
- - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
205
 
206
  ## References
207
  * [Extremely Lightweight Quantization Robust Real-Time Single-Image Super Resolution for Mobile Devices](https://arxiv.org/abs/2105.10288)
 
24
 
25
  - **Model Type:** Super resolution
26
  - **Model Stats:**
27
+ - Model checkpoint: xlsr_3x_checkpoint
28
+ - Input resolution: 640x360
29
+ - Number of parameters: 22.0K
30
+ - Model size: 92.7 KB
31
+
32
+
33
 
34
 
35
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
  | ---|---|---|---|---|---|---|---|
37
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 2.486 ms | 0 - 7 MB | FP16 | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite)
38
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.374 ms | 0 - 15 MB | FP16 | NPU | [XLSR.so](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.so)
39
+
40
 
41
 
42
  ## Installation
 
97
  Profile Job summary of XLSR
98
  --------------------------------------------------
99
  Device: Snapdragon X Elite CRD (11)
100
+ Estimated Inference Time: 3.63 ms
101
+ Estimated Peak Memory Range: 0.21-0.21 MB
102
  Compute Units: NPU (21) | Total (21)
103
 
104
 
105
  ```
106
+
107
+
108
  ## How does this work?
109
 
110
+ This [export script](https://aihub.qualcomm.com/models/xlsr/qai_hub_models/models/XLSR/export.py)
111
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
112
  on-device. Lets go through each step below in detail:
113
 
 
185
 
186
 
187
 
188
+
189
  ## Deploying compiled model to Android
190
 
191
 
 
207
  ## License
208
  - The license for the original implementation of XLSR can be found
209
  [here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
210
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
211
 
212
  ## References
213
  * [Extremely Lightweight Quantization Robust Real-Time Single-Image Super Resolution for Mobile Devices](https://arxiv.org/abs/2105.10288)