Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -24,16 +24,19 @@ More details on model performance across various devices, can be found
|
|
24 |
|
25 |
- **Model Type:** Super resolution
|
26 |
- **Model Stats:**
|
27 |
-
- Model checkpoint:
|
28 |
-
- Input resolution:
|
29 |
-
- Number of parameters:
|
30 |
-
- Model size:
|
|
|
|
|
31 |
|
32 |
|
33 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
34 |
| ---|---|---|---|---|---|---|---|
|
35 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 2.
|
36 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.
|
|
|
37 |
|
38 |
|
39 |
## Installation
|
@@ -94,15 +97,17 @@ python -m qai_hub_models.models.xlsr.export
|
|
94 |
Profile Job summary of XLSR
|
95 |
--------------------------------------------------
|
96 |
Device: Snapdragon X Elite CRD (11)
|
97 |
-
Estimated Inference Time: 3.
|
98 |
-
Estimated Peak Memory Range: 0.
|
99 |
Compute Units: NPU (21) | Total (21)
|
100 |
|
101 |
|
102 |
```
|
|
|
|
|
103 |
## How does this work?
|
104 |
|
105 |
-
This [export script](https://
|
106 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
107 |
on-device. Lets go through each step below in detail:
|
108 |
|
@@ -180,6 +185,7 @@ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
|
180 |
|
181 |
|
182 |
|
|
|
183 |
## Deploying compiled model to Android
|
184 |
|
185 |
|
@@ -201,7 +207,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
201 |
## License
|
202 |
- The license for the original implementation of XLSR can be found
|
203 |
[here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
|
204 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
205 |
|
206 |
## References
|
207 |
* [Extremely Lightweight Quantization Robust Real-Time Single-Image Super Resolution for Mobile Devices](https://arxiv.org/abs/2105.10288)
|
|
|
24 |
|
25 |
- **Model Type:** Super resolution
|
26 |
- **Model Stats:**
|
27 |
+
- Model checkpoint: xlsr_3x_checkpoint
|
28 |
+
- Input resolution: 640x360
|
29 |
+
- Number of parameters: 22.0K
|
30 |
+
- Model size: 92.7 KB
|
31 |
+
|
32 |
+
|
33 |
|
34 |
|
35 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
| ---|---|---|---|---|---|---|---|
|
37 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 2.486 ms | 0 - 7 MB | FP16 | NPU | [XLSR.tflite](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.tflite)
|
38 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.374 ms | 0 - 15 MB | FP16 | NPU | [XLSR.so](https://huggingface.co/qualcomm/XLSR/blob/main/XLSR.so)
|
39 |
+
|
40 |
|
41 |
|
42 |
## Installation
|
|
|
97 |
Profile Job summary of XLSR
|
98 |
--------------------------------------------------
|
99 |
Device: Snapdragon X Elite CRD (11)
|
100 |
+
Estimated Inference Time: 3.63 ms
|
101 |
+
Estimated Peak Memory Range: 0.21-0.21 MB
|
102 |
Compute Units: NPU (21) | Total (21)
|
103 |
|
104 |
|
105 |
```
|
106 |
+
|
107 |
+
|
108 |
## How does this work?
|
109 |
|
110 |
+
This [export script](https://aihub.qualcomm.com/models/xlsr/qai_hub_models/models/XLSR/export.py)
|
111 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
112 |
on-device. Lets go through each step below in detail:
|
113 |
|
|
|
185 |
|
186 |
|
187 |
|
188 |
+
|
189 |
## Deploying compiled model to Android
|
190 |
|
191 |
|
|
|
207 |
## License
|
208 |
- The license for the original implementation of XLSR can be found
|
209 |
[here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
|
210 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
211 |
|
212 |
## References
|
213 |
* [Extremely Lightweight Quantization Robust Real-Time Single-Image Super Resolution for Mobile Devices](https://arxiv.org/abs/2105.10288)
|