shreyajn commited on
Commit
382d52c
1 Parent(s): 7f19c97

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +240 -0
README.md ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - imagenet-1k
4
+ - imagenet-22k
5
+ library_name: pytorch
6
+ license: bsd-3-clause
7
+ pipeline_tag: image-classification
8
+ tags:
9
+ - backbone
10
+ - quantized
11
+ - android
12
+
13
+ ---
14
+
15
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/resnet18_quantized/web-assets/banner.png)
16
+
17
+ # ResNet18Quantized: Optimized for Mobile Deployment
18
+ ## Imagenet classifier and general purpose backbone
19
+
20
+ ResNet18 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
21
+
22
+ This model is an implementation of ResNet18Quantized found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py).
23
+ This repository provides scripts to run ResNet18Quantized on Qualcomm® devices.
24
+ More details on model performance across various devices, can be found
25
+ [here](https://aihub.qualcomm.com/models/resnet18_quantized).
26
+
27
+
28
+ ### Model Details
29
+
30
+ - **Model Type:** Image classification
31
+ - **Model Stats:**
32
+ - Model checkpoint: Imagenet
33
+ - Input resolution: 224x224
34
+ - Number of parameters: 11.7M
35
+ - Model size: 11.3 MB
36
+
37
+
38
+ | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
+ | ---|---|---|---|---|---|---|---|
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.375 ms | 0 - 14 MB | FP16 | NPU | [ResNet18Quantized.tflite](https://huggingface.co/qualcomm/ResNet18Quantized/blob/main/ResNet18Quantized.tflite)
41
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.359 ms | 0 - 68 MB | FP16 | NPU | [ResNet18Quantized.so](https://huggingface.co/qualcomm/ResNet18Quantized/blob/main/ResNet18Quantized.so)
42
+
43
+
44
+ ## Installation
45
+
46
+ This model can be installed as a Python package via pip.
47
+
48
+ ```bash
49
+ pip install qai-hub-models
50
+ ```
51
+
52
+
53
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
54
+
55
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
56
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
57
+
58
+ With this API token, you can configure your client to run models on the cloud
59
+ hosted devices.
60
+ ```bash
61
+ qai-hub configure --api_token API_TOKEN
62
+ ```
63
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
64
+
65
+
66
+
67
+ ## Demo off target
68
+
69
+ The package contains a simple end-to-end demo that downloads pre-trained
70
+ weights and runs this model on a sample input.
71
+
72
+ ```bash
73
+ python -m qai_hub_models.models.resnet18_quantized.demo
74
+ ```
75
+
76
+ The above demo runs a reference implementation of pre-processing, model
77
+ inference, and post processing.
78
+
79
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
80
+ environment, please add the following to your cell (instead of the above).
81
+ ```
82
+ %run -m qai_hub_models.models.resnet18_quantized.demo
83
+ ```
84
+
85
+
86
+ ### Run model on a cloud-hosted device
87
+
88
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
89
+ device. This script does the following:
90
+ * Performance check on-device on a cloud-hosted device
91
+ * Downloads compiled assets that can be deployed on-device for Android.
92
+ * Accuracy check between PyTorch and on-device outputs.
93
+
94
+ ```bash
95
+ python -m qai_hub_models.models.resnet18_quantized.export
96
+ ```
97
+
98
+ ```
99
+ Profile Job summary of ResNet18Quantized
100
+ --------------------------------------------------
101
+ Device: Samsung Galaxy S23 Ultra (13)
102
+ Estimated Inference Time: 0.38 ms
103
+ Estimated Peak Memory Range: 0.01-14.00 MB
104
+ Compute Units: NPU (37) | Total (37)
105
+
106
+ Profile Job summary of ResNet18Quantized
107
+ --------------------------------------------------
108
+ Device: Samsung Galaxy S23 Ultra (13)
109
+ Estimated Inference Time: 0.36 ms
110
+ Estimated Peak Memory Range: 0.01-67.99 MB
111
+ Compute Units: NPU (35) | Total (35)
112
+
113
+
114
+ ```
115
+ ## How does this work?
116
+
117
+ This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/ResNet18Quantized/export.py)
118
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
119
+ on-device. Lets go through each step below in detail:
120
+
121
+ Step 1: **Compile model for on-device deployment**
122
+
123
+ To compile a PyTorch model for on-device deployment, we first trace the model
124
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
125
+
126
+ ```python
127
+ import torch
128
+
129
+ import qai_hub as hub
130
+ from qai_hub_models.models.resnet18_quantized import Model
131
+
132
+ # Load the model
133
+ torch_model = Model.from_pretrained()
134
+ torch_model.eval()
135
+
136
+ # Device
137
+ device = hub.Device("Samsung Galaxy S23")
138
+
139
+ # Trace model
140
+ input_shape = torch_model.get_input_spec()
141
+ sample_inputs = torch_model.sample_inputs()
142
+
143
+ pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
144
+
145
+ # Compile model on a specific device
146
+ compile_job = hub.submit_compile_job(
147
+ model=pt_model,
148
+ device=device,
149
+ input_specs=torch_model.get_input_spec(),
150
+ )
151
+
152
+ # Get target model to run on-device
153
+ target_model = compile_job.get_target_model()
154
+
155
+ ```
156
+
157
+
158
+ Step 2: **Performance profiling on cloud-hosted device**
159
+
160
+ After compiling models from step 1. Models can be profiled model on-device using the
161
+ `target_model`. Note that this scripts runs the model on a device automatically
162
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
163
+ provided job URL to view a variety of on-device performance metrics.
164
+ ```python
165
+ profile_job = hub.submit_profile_job(
166
+ model=target_model,
167
+ device=device,
168
+ )
169
+
170
+ ```
171
+
172
+ Step 3: **Verify on-device accuracy**
173
+
174
+ To verify the accuracy of the model on-device, you can run on-device inference
175
+ on sample input data on the same cloud hosted device.
176
+ ```python
177
+ input_data = torch_model.sample_inputs()
178
+ inference_job = hub.submit_inference_job(
179
+ model=target_model,
180
+ device=device,
181
+ inputs=input_data,
182
+ )
183
+
184
+ on_device_output = inference_job.download_output_data()
185
+
186
+ ```
187
+ With the output of the model, you can compute like PSNR, relative errors or
188
+ spot check the output with expected output.
189
+
190
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
191
+ AI Hub. [Sign up for early access](https://aihub.qualcomm.com/sign-up).
192
+
193
+
194
+ ## Run demo on a cloud-hosted device
195
+
196
+ You can also run the demo on-device.
197
+
198
+ ```bash
199
+ python -m qai_hub_models.models.resnet18_quantized.demo --on-device
200
+ ```
201
+
202
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
203
+ environment, please add the following to your cell (instead of the above).
204
+ ```
205
+ %run -m qai_hub_models.models.resnet18_quantized.demo -- --on-device
206
+ ```
207
+
208
+
209
+ ## Deploying compiled model to Android
210
+
211
+
212
+ The models can be deployed using multiple runtimes:
213
+ - TensorFlow Lite (`.tflite` export): [This
214
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
215
+ guide to deploy the .tflite model in an Android application.
216
+
217
+
218
+ - QNN (`.so` export ): This [sample
219
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
220
+ provides instructions on how to use the `.so` shared library in an Android application.
221
+
222
+
223
+ ## View on Qualcomm® AI Hub
224
+ Get more details on ResNet18Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/resnet18_quantized).
225
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
226
+
227
+ ## License
228
+ - The license for the original implementation of ResNet18Quantized can be found
229
+ [here](https://github.com/pytorch/vision/blob/main/LICENSE).
230
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
231
+
232
+ ## References
233
+ * [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
234
+ * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py)
235
+
236
+ ## Community
237
+ * Join [our AI Hub Slack community](https://join.slack.com/t/qualcomm-ai-hub/shared_invite/zt-2dgf95loi-CXHTDRR1rvPgQWPO~ZZZJg) to collaborate, post questions and learn more about on-device AI.
238
+ * For questions or feedback please [reach out to us](mailto:[email protected]).
239
+
240
+