qaihm-bot commited on
Commit
fa5cbd9
·
verified ·
1 Parent(s): ab66411

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +108 -32
README.md CHANGED
@@ -35,48 +35,47 @@ More details on model performance across various devices, can be found
35
 
36
  | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
37
  |---|---|---|---|---|---|---|---|---|
38
- | Midas-V2-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.1 ms | 0 - 59 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
39
  | Midas-V2-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.439 ms | 0 - 64 MB | INT8 | NPU | [Midas-V2-Quantized.so](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.so) |
40
- | Midas-V2-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 9.224 ms | 0 - 82 MB | INT8 | NPU | [Midas-V2-Quantized.onnx](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.onnx) |
41
- | Midas-V2-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.767 ms | 0 - 38 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
42
- | Midas-V2-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.014 ms | 0 - 29 MB | INT8 | NPU | [Midas-V2-Quantized.so](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.so) |
43
- | Midas-V2-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 7.176 ms | 2 - 143 MB | INT8 | NPU | [Midas-V2-Quantized.onnx](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.onnx) |
44
- | Midas-V2-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.713 ms | 0 - 26 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
45
- | Midas-V2-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.003 ms | 0 - 26 MB | INT8 | NPU | Use Export Script |
46
- | Midas-V2-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 7.906 ms | 0 - 127 MB | INT8 | NPU | [Midas-V2-Quantized.onnx](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.onnx) |
47
- | Midas-V2-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 3.849 ms | 0 - 27 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
48
- | Midas-V2-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 5.812 ms | 0 - 11 MB | INT8 | NPU | Use Export Script |
49
- | Midas-V2-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 15.87 ms | 0 - 2 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
50
- | Midas-V2-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.099 ms | 0 - 59 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
51
- | Midas-V2-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.335 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
52
- | Midas-V2-Quantized | SA7255P ADP | SA7255P | TFLITE | 11.071 ms | 0 - 22 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
53
- | Midas-V2-Quantized | SA7255P ADP | SA7255P | QNN | 12.293 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
54
- | Midas-V2-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.097 ms | 0 - 49 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
55
- | Midas-V2-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.323 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
56
- | Midas-V2-Quantized | SA8295P ADP | SA8295P | TFLITE | 1.939 ms | 0 - 29 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
57
- | Midas-V2-Quantized | SA8295P ADP | SA8295P | QNN | 2.489 ms | 0 - 14 MB | INT8 | NPU | Use Export Script |
58
- | Midas-V2-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.098 ms | 0 - 59 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
59
- | Midas-V2-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.326 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
60
- | Midas-V2-Quantized | SA8775P ADP | SA8775P | TFLITE | 1.615 ms | 0 - 22 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
61
- | Midas-V2-Quantized | SA8775P ADP | SA8775P | QNN | 2.095 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
62
- | Midas-V2-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.429 ms | 0 - 26 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
63
- | Midas-V2-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.801 ms | 0 - 28 MB | INT8 | NPU | Use Export Script |
64
- | Midas-V2-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.471 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
65
- | Midas-V2-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.846 ms | 23 - 23 MB | INT8 | NPU | [Midas-V2-Quantized.onnx](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.onnx) |
66
 
67
 
68
 
69
 
70
  ## Installation
71
 
72
- This model can be installed as a Python package via pip.
73
 
 
74
  ```bash
75
- pip install "qai-hub-models[midas_quantized]"
76
  ```
77
 
78
 
79
-
80
  ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
81
 
82
  Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
@@ -128,12 +127,88 @@ Midas-V2-Quantized
128
  Device : Samsung Galaxy S23 (13)
129
  Runtime : TFLITE
130
  Estimated inference time (ms) : 1.1
131
- Estimated peak memory usage (MB): [0, 59]
132
  Total # Ops : 145
133
  Compute Unit(s) : NPU (145 ops)
134
  ```
135
 
136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
 
138
 
139
  ## Run demo on a cloud-hosted device
@@ -171,7 +246,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
171
 
172
 
173
  ## License
174
- * The license for the original implementation of Midas-V2-Quantized can be found [here](https://github.com/isl-org/MiDaS/blob/master/LICENSE).
 
175
  * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
176
 
177
 
 
35
 
36
  | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
37
  |---|---|---|---|---|---|---|---|---|
38
+ | Midas-V2-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.097 ms | 0 - 60 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
39
  | Midas-V2-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.439 ms | 0 - 64 MB | INT8 | NPU | [Midas-V2-Quantized.so](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.so) |
40
+ | Midas-V2-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 9.111 ms | 0 - 80 MB | INT8 | NPU | [Midas-V2-Quantized.onnx](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.onnx) |
41
+ | Midas-V2-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.76 ms | 0 - 35 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
42
+ | Midas-V2-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.012 ms | 0 - 27 MB | INT8 | NPU | [Midas-V2-Quantized.so](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.so) |
43
+ | Midas-V2-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 7.0 ms | 0 - 144 MB | INT8 | NPU | [Midas-V2-Quantized.onnx](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.onnx) |
44
+ | Midas-V2-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.723 ms | 0 - 32 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
45
+ | Midas-V2-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.976 ms | 0 - 29 MB | INT8 | NPU | Use Export Script |
46
+ | Midas-V2-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 7.494 ms | 0 - 130 MB | INT8 | NPU | [Midas-V2-Quantized.onnx](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.onnx) |
47
+ | Midas-V2-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 3.796 ms | 0 - 27 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
48
+ | Midas-V2-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 5.825 ms | 0 - 12 MB | INT8 | NPU | Use Export Script |
49
+ | Midas-V2-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 15.706 ms | 0 - 3 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
50
+ | Midas-V2-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.097 ms | 0 - 59 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
51
+ | Midas-V2-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.318 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
52
+ | Midas-V2-Quantized | SA7255P ADP | SA7255P | TFLITE | 10.93 ms | 0 - 22 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
53
+ | Midas-V2-Quantized | SA7255P ADP | SA7255P | QNN | 12.132 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
54
+ | Midas-V2-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.099 ms | 0 - 48 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
55
+ | Midas-V2-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.342 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
56
+ | Midas-V2-Quantized | SA8295P ADP | SA8295P | TFLITE | 1.948 ms | 0 - 29 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
57
+ | Midas-V2-Quantized | SA8295P ADP | SA8295P | QNN | 2.531 ms | 0 - 14 MB | INT8 | NPU | Use Export Script |
58
+ | Midas-V2-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.096 ms | 0 - 60 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
59
+ | Midas-V2-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.327 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
60
+ | Midas-V2-Quantized | SA8775P ADP | SA8775P | TFLITE | 1.611 ms | 0 - 22 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
61
+ | Midas-V2-Quantized | SA8775P ADP | SA8775P | QNN | 2.122 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
62
+ | Midas-V2-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.427 ms | 0 - 33 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
63
+ | Midas-V2-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.859 ms | 0 - 30 MB | INT8 | NPU | Use Export Script |
64
+ | Midas-V2-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.465 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
65
+ | Midas-V2-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.898 ms | 23 - 23 MB | INT8 | NPU | [Midas-V2-Quantized.onnx](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.onnx) |
66
 
67
 
68
 
69
 
70
  ## Installation
71
 
 
72
 
73
+ Install the package via pip:
74
  ```bash
75
+ pip install "qai-hub-models[midas-quantized]"
76
  ```
77
 
78
 
 
79
  ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
80
 
81
  Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
 
127
  Device : Samsung Galaxy S23 (13)
128
  Runtime : TFLITE
129
  Estimated inference time (ms) : 1.1
130
+ Estimated peak memory usage (MB): [0, 60]
131
  Total # Ops : 145
132
  Compute Unit(s) : NPU (145 ops)
133
  ```
134
 
135
 
136
+ ## How does this work?
137
+
138
+ This [export script](https://aihub.qualcomm.com/models/midas_quantized/qai_hub_models/models/Midas-V2-Quantized/export.py)
139
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
140
+ on-device. Lets go through each step below in detail:
141
+
142
+ Step 1: **Compile model for on-device deployment**
143
+
144
+ To compile a PyTorch model for on-device deployment, we first trace the model
145
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
146
+
147
+ ```python
148
+ import torch
149
+
150
+ import qai_hub as hub
151
+ from qai_hub_models.models.midas_quantized import Model
152
+
153
+ # Load the model
154
+ torch_model = Model.from_pretrained()
155
+
156
+ # Device
157
+ device = hub.Device("Samsung Galaxy S24")
158
+
159
+ # Trace model
160
+ input_shape = torch_model.get_input_spec()
161
+ sample_inputs = torch_model.sample_inputs()
162
+
163
+ pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
164
+
165
+ # Compile model on a specific device
166
+ compile_job = hub.submit_compile_job(
167
+ model=pt_model,
168
+ device=device,
169
+ input_specs=torch_model.get_input_spec(),
170
+ )
171
+
172
+ # Get target model to run on-device
173
+ target_model = compile_job.get_target_model()
174
+
175
+ ```
176
+
177
+
178
+ Step 2: **Performance profiling on cloud-hosted device**
179
+
180
+ After compiling models from step 1. Models can be profiled model on-device using the
181
+ `target_model`. Note that this scripts runs the model on a device automatically
182
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
183
+ provided job URL to view a variety of on-device performance metrics.
184
+ ```python
185
+ profile_job = hub.submit_profile_job(
186
+ model=target_model,
187
+ device=device,
188
+ )
189
+
190
+ ```
191
+
192
+ Step 3: **Verify on-device accuracy**
193
+
194
+ To verify the accuracy of the model on-device, you can run on-device inference
195
+ on sample input data on the same cloud hosted device.
196
+ ```python
197
+ input_data = torch_model.sample_inputs()
198
+ inference_job = hub.submit_inference_job(
199
+ model=target_model,
200
+ device=device,
201
+ inputs=input_data,
202
+ )
203
+ on_device_output = inference_job.download_output_data()
204
+
205
+ ```
206
+ With the output of the model, you can compute like PSNR, relative errors or
207
+ spot check the output with expected output.
208
+
209
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
210
+ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
211
+
212
 
213
 
214
  ## Run demo on a cloud-hosted device
 
246
 
247
 
248
  ## License
249
+ * The license for the original implementation of Midas-V2-Quantized can be found
250
+ [here](https://github.com/isl-org/MiDaS/blob/master/LICENSE).
251
  * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
252
 
253