Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -31,9 +31,12 @@ More details on model performance across various devices, can be found
|
|
31 |
- Model size: 363 MB
|
32 |
|
33 |
|
|
|
|
|
34 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
| ---|---|---|---|---|---|---|---|
|
36 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite |
|
|
|
37 |
|
38 |
|
39 |
## Installation
|
@@ -91,9 +94,21 @@ device. This script does the following:
|
|
91 |
python -m qai_hub_models.models.huggingface_wavlm_base_plus.export
|
92 |
```
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
## How does this work?
|
95 |
|
96 |
-
This [export script](https://
|
97 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
98 |
on-device. Lets go through each step below in detail:
|
99 |
|
@@ -171,6 +186,7 @@ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
|
171 |
|
172 |
|
173 |
|
|
|
174 |
## Deploying compiled model to Android
|
175 |
|
176 |
|
@@ -192,7 +208,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
192 |
## License
|
193 |
- The license for the original implementation of HuggingFace-WavLM-Base-Plus can be found
|
194 |
[here](https://github.com/microsoft/unilm/blob/master/LICENSE).
|
195 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
196 |
|
197 |
## References
|
198 |
* [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900)
|
|
|
31 |
- Model size: 363 MB
|
32 |
|
33 |
|
34 |
+
|
35 |
+
|
36 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
| ---|---|---|---|---|---|---|---|
|
38 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 920.916 ms | 141 - 148 MB | FP32 | CPU | [HuggingFace-WavLM-Base-Plus.tflite](https://huggingface.co/qualcomm/HuggingFace-WavLM-Base-Plus/blob/main/HuggingFace-WavLM-Base-Plus.tflite)
|
39 |
+
|
40 |
|
41 |
|
42 |
## Installation
|
|
|
94 |
python -m qai_hub_models.models.huggingface_wavlm_base_plus.export
|
95 |
```
|
96 |
|
97 |
+
```
|
98 |
+
Profile Job summary of HuggingFace-WavLM-Base-Plus
|
99 |
+
--------------------------------------------------
|
100 |
+
Device: QCS8550 (Proxy) (12)
|
101 |
+
Estimated Inference Time: 932.00 ms
|
102 |
+
Estimated Peak Memory Range: 142.46-146.71 MB
|
103 |
+
Compute Units: CPU (811) | Total (811)
|
104 |
+
|
105 |
+
|
106 |
+
```
|
107 |
+
|
108 |
+
|
109 |
## How does this work?
|
110 |
|
111 |
+
This [export script](https://aihub.qualcomm.com/models/huggingface_wavlm_base_plus/qai_hub_models/models/HuggingFace-WavLM-Base-Plus/export.py)
|
112 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
113 |
on-device. Lets go through each step below in detail:
|
114 |
|
|
|
186 |
|
187 |
|
188 |
|
189 |
+
|
190 |
## Deploying compiled model to Android
|
191 |
|
192 |
|
|
|
208 |
## License
|
209 |
- The license for the original implementation of HuggingFace-WavLM-Base-Plus can be found
|
210 |
[here](https://github.com/microsoft/unilm/blob/master/LICENSE).
|
211 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
212 |
|
213 |
## References
|
214 |
* [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900)
|