Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -35,29 +35,29 @@ More details on model performance across various devices, can be found
|
|
35 |
|
36 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
|---|---|---|---|---|---|---|---|---|
|
38 |
-
| EfficientNet-V2-s | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 2.
|
39 |
-
| EfficientNet-V2-s | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 2.
|
40 |
-
| EfficientNet-V2-s | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 2.
|
41 |
-
| EfficientNet-V2-s | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 2.
|
42 |
-
| EfficientNet-V2-s | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.
|
43 |
-
| EfficientNet-V2-s | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 2.
|
44 |
-
| EfficientNet-V2-s | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 1.
|
45 |
-
| EfficientNet-V2-s | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.
|
46 |
-
| EfficientNet-V2-s | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 2.
|
47 |
-
| EfficientNet-V2-s | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 2.
|
48 |
-
| EfficientNet-V2-s | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 2.
|
49 |
-
| EfficientNet-V2-s | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 5.
|
50 |
-
| EfficientNet-V2-s | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 5.
|
51 |
-
| EfficientNet-V2-s | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 3.
|
52 |
-
| EfficientNet-V2-s | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3.
|
53 |
|
54 |
|
55 |
|
56 |
|
57 |
## Installation
|
58 |
|
59 |
-
This model can be installed as a Python package via pip.
|
60 |
|
|
|
61 |
```bash
|
62 |
pip install qai-hub-models
|
63 |
```
|
@@ -141,7 +141,7 @@ from qai_hub_models.models.efficientnet_v2_s import Model
|
|
141 |
torch_model = Model.from_pretrained()
|
142 |
|
143 |
# Device
|
144 |
-
device = hub.Device("Samsung Galaxy
|
145 |
|
146 |
# Trace model
|
147 |
input_shape = torch_model.get_input_spec()
|
@@ -233,7 +233,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
233 |
|
234 |
|
235 |
## License
|
236 |
-
* The license for the original implementation of EfficientNet-V2-s can be found
|
|
|
237 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
238 |
|
239 |
|
|
|
35 |
|
36 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
|---|---|---|---|---|---|---|---|---|
|
38 |
+
| EfficientNet-V2-s | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 2.77 ms | 0 - 222 MB | FP16 | NPU | [EfficientNet-V2-s.tflite](https://huggingface.co/qualcomm/EfficientNet-V2-s/blob/main/EfficientNet-V2-s.tflite) |
|
39 |
+
| EfficientNet-V2-s | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 2.882 ms | 0 - 171 MB | FP16 | NPU | [EfficientNet-V2-s.so](https://huggingface.co/qualcomm/EfficientNet-V2-s/blob/main/EfficientNet-V2-s.so) |
|
40 |
+
| EfficientNet-V2-s | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 2.962 ms | 0 - 189 MB | FP16 | NPU | [EfficientNet-V2-s.onnx](https://huggingface.co/qualcomm/EfficientNet-V2-s/blob/main/EfficientNet-V2-s.onnx) |
|
41 |
+
| EfficientNet-V2-s | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 2.055 ms | 0 - 29 MB | FP16 | NPU | [EfficientNet-V2-s.tflite](https://huggingface.co/qualcomm/EfficientNet-V2-s/blob/main/EfficientNet-V2-s.tflite) |
|
42 |
+
| EfficientNet-V2-s | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.104 ms | 1 - 31 MB | FP16 | NPU | [EfficientNet-V2-s.so](https://huggingface.co/qualcomm/EfficientNet-V2-s/blob/main/EfficientNet-V2-s.so) |
|
43 |
+
| EfficientNet-V2-s | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 2.186 ms | 0 - 41 MB | FP16 | NPU | [EfficientNet-V2-s.onnx](https://huggingface.co/qualcomm/EfficientNet-V2-s/blob/main/EfficientNet-V2-s.onnx) |
|
44 |
+
| EfficientNet-V2-s | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 1.638 ms | 0 - 32 MB | FP16 | NPU | [EfficientNet-V2-s.tflite](https://huggingface.co/qualcomm/EfficientNet-V2-s/blob/main/EfficientNet-V2-s.tflite) |
|
45 |
+
| EfficientNet-V2-s | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.98 ms | 1 - 30 MB | FP16 | NPU | Use Export Script |
|
46 |
+
| EfficientNet-V2-s | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 2.083 ms | 1 - 37 MB | FP16 | NPU | [EfficientNet-V2-s.onnx](https://huggingface.co/qualcomm/EfficientNet-V2-s/blob/main/EfficientNet-V2-s.onnx) |
|
47 |
+
| EfficientNet-V2-s | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 2.762 ms | 0 - 223 MB | FP16 | NPU | [EfficientNet-V2-s.tflite](https://huggingface.co/qualcomm/EfficientNet-V2-s/blob/main/EfficientNet-V2-s.tflite) |
|
48 |
+
| EfficientNet-V2-s | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 2.766 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
|
49 |
+
| EfficientNet-V2-s | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 5.223 ms | 0 - 39 MB | FP16 | NPU | [EfficientNet-V2-s.tflite](https://huggingface.co/qualcomm/EfficientNet-V2-s/blob/main/EfficientNet-V2-s.tflite) |
|
50 |
+
| EfficientNet-V2-s | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 5.41 ms | 1 - 38 MB | FP16 | NPU | Use Export Script |
|
51 |
+
| EfficientNet-V2-s | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 3.035 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
|
52 |
+
| EfficientNet-V2-s | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3.078 ms | 49 - 49 MB | FP16 | NPU | [EfficientNet-V2-s.onnx](https://huggingface.co/qualcomm/EfficientNet-V2-s/blob/main/EfficientNet-V2-s.onnx) |
|
53 |
|
54 |
|
55 |
|
56 |
|
57 |
## Installation
|
58 |
|
|
|
59 |
|
60 |
+
Install the package via pip:
|
61 |
```bash
|
62 |
pip install qai-hub-models
|
63 |
```
|
|
|
141 |
torch_model = Model.from_pretrained()
|
142 |
|
143 |
# Device
|
144 |
+
device = hub.Device("Samsung Galaxy S24")
|
145 |
|
146 |
# Trace model
|
147 |
input_shape = torch_model.get_input_spec()
|
|
|
233 |
|
234 |
|
235 |
## License
|
236 |
+
* The license for the original implementation of EfficientNet-V2-s can be found
|
237 |
+
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
238 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
239 |
|
240 |
|