import time import torch from options.train_options import TrainOptions from data import create_dataset from models import create_model from util.visualizer import Visualizer if __name__ == "__main__": opt = TrainOptions().parse() # get training options dataset = create_dataset( opt ) # create a dataset given opt.dataset_mode and other options dataset_size = len(dataset) # get the number of images in the dataset. model = create_model(opt) # create a model given opt.model and other options print("The number of training images = %d" % dataset_size) visualizer = Visualizer( opt ) # create a visualizer that display/save images and plots opt.visualizer = visualizer total_iters = 0 # the total number of training iterations optimize_time = 0.1 times = [] for epoch in range( opt.epoch_count, opt.n_epochs + opt.n_epochs_decay + 1 ): # outer loop for different epochs; we save the model by , + epoch_start_time = time.time() # timer for entire epoch iter_data_time = time.time() # timer for data loading per iteration epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch visualizer.reset() # reset the visualizer: make sure it saves the results to HTML at least once every epoch dataset.set_epoch(epoch) for i, data in enumerate(dataset): # inner loop within one epoch iter_start_time = time.time() # timer for computation per iteration if total_iters % opt.print_freq == 0: t_data = iter_start_time - iter_data_time batch_size = data["A"].size(0) total_iters += batch_size epoch_iter += batch_size if len(opt.gpu_ids) > 0: torch.cuda.synchronize() optimize_start_time = time.time() if epoch == opt.epoch_count and i == 0: model.data_dependent_initialize(data) model.setup( opt ) # regular setup: load and print networks; create schedulers model.parallelize() model.set_input(data) # unpack data from dataset and apply preprocessing model.optimize_parameters() # calculate loss functions, get gradients, update network weights if len(opt.gpu_ids) > 0: torch.cuda.synchronize() optimize_time = ( time.time() - optimize_start_time ) / batch_size * 0.005 + 0.995 * optimize_time if ( total_iters % opt.display_freq == 0 ): # display images on visdom and save images to a HTML file save_result = total_iters % opt.update_html_freq == 0 model.compute_visuals() visualizer.display_current_results( model.get_current_visuals(), epoch, save_result ) if ( total_iters % opt.print_freq == 0 ): # print training losses and save logging information to the disk losses = model.get_current_losses() visualizer.print_current_losses( epoch, epoch_iter, losses, optimize_time, t_data ) if opt.display_id is None or opt.display_id > 0: visualizer.plot_current_losses( epoch, float(epoch_iter) / dataset_size, losses ) if ( total_iters % opt.save_latest_freq == 0 ): # cache our latest model every iterations print( "saving the latest model (epoch %d, total_iters %d)" % (epoch, total_iters) ) print( opt.name ) # it's useful to occasionally show the experiment name on console save_suffix = "iter_%d" % total_iters if opt.save_by_iter else "latest" model.save_networks(save_suffix) iter_data_time = time.time() if ( epoch % opt.save_epoch_freq == 0 ): # cache our model every epochs print( "saving the model at the end of epoch %d, iters %d" % (epoch, total_iters) ) model.save_networks("latest") model.save_networks(epoch) print( "End of epoch %d / %d \t Time Taken: %d sec" % (epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time) ) model.update_learning_rate() # update learning rates at the end of every epoch.