qiufengqijun
commited on
上传权重
Browse files- .gitattributes +1 -0
- added_tokens.json +24 -0
- config.json +29 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +207 -0
- trainer_state.json +2735 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +604 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "results/pt",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 4864,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 21,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 48,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": true,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.45.0",
|
26 |
+
"use_cache": true,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 151936
|
29 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 151643,
|
4 |
+
"eos_token_id": 151645,
|
5 |
+
"transformers_version": "4.45.0"
|
6 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e65c87db8ba6549db8bddcece93542499ab9c9eadcef176542b74aa194eb2e7f
|
3 |
+
size 2308852232
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
tokenizer_config.json
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"split_special_tokens": false,
|
205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
206 |
+
"unk_token": null
|
207 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2735 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9998787339827803,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 7730,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.002587008367355188,
|
13 |
+
"grad_norm": 3.117795467376709,
|
14 |
+
"learning_rate": 8.624407072013799e-08,
|
15 |
+
"loss": 3.7293,
|
16 |
+
"step": 20
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.005174016734710376,
|
20 |
+
"grad_norm": 3.1848440170288086,
|
21 |
+
"learning_rate": 1.7248814144027598e-07,
|
22 |
+
"loss": 3.7345,
|
23 |
+
"step": 40
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.007761025102065565,
|
27 |
+
"grad_norm": 3.073965072631836,
|
28 |
+
"learning_rate": 2.5873221216041403e-07,
|
29 |
+
"loss": 3.7232,
|
30 |
+
"step": 60
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.010348033469420752,
|
34 |
+
"grad_norm": 2.366281032562256,
|
35 |
+
"learning_rate": 3.4497628288055197e-07,
|
36 |
+
"loss": 3.6733,
|
37 |
+
"step": 80
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.012935041836775941,
|
41 |
+
"grad_norm": 1.8071706295013428,
|
42 |
+
"learning_rate": 4.3122035360069e-07,
|
43 |
+
"loss": 3.5801,
|
44 |
+
"step": 100
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.01552205020413113,
|
48 |
+
"grad_norm": 1.3455595970153809,
|
49 |
+
"learning_rate": 5.174644243208281e-07,
|
50 |
+
"loss": 3.4895,
|
51 |
+
"step": 120
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.018109058571486317,
|
55 |
+
"grad_norm": 0.9497399926185608,
|
56 |
+
"learning_rate": 6.03708495040966e-07,
|
57 |
+
"loss": 3.3785,
|
58 |
+
"step": 140
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.020696066938841504,
|
62 |
+
"grad_norm": 0.9015834331512451,
|
63 |
+
"learning_rate": 6.899525657611039e-07,
|
64 |
+
"loss": 3.3095,
|
65 |
+
"step": 160
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.023283075306196693,
|
69 |
+
"grad_norm": 0.8537250757217407,
|
70 |
+
"learning_rate": 7.761966364812419e-07,
|
71 |
+
"loss": 3.1901,
|
72 |
+
"step": 180
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.025870083673551883,
|
76 |
+
"grad_norm": 0.8126162886619568,
|
77 |
+
"learning_rate": 8.6244070720138e-07,
|
78 |
+
"loss": 3.1323,
|
79 |
+
"step": 200
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.02845709204090707,
|
83 |
+
"grad_norm": 0.8042150139808655,
|
84 |
+
"learning_rate": 9.48684777921518e-07,
|
85 |
+
"loss": 3.0969,
|
86 |
+
"step": 220
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.03104410040826226,
|
90 |
+
"grad_norm": 0.7180504202842712,
|
91 |
+
"learning_rate": 1.0349288486416561e-06,
|
92 |
+
"loss": 3.0284,
|
93 |
+
"step": 240
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.033631108775617445,
|
97 |
+
"grad_norm": 0.7540543675422668,
|
98 |
+
"learning_rate": 1.1211729193617941e-06,
|
99 |
+
"loss": 3.043,
|
100 |
+
"step": 260
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.036218117142972635,
|
104 |
+
"grad_norm": 0.720626175403595,
|
105 |
+
"learning_rate": 1.207416990081932e-06,
|
106 |
+
"loss": 3.002,
|
107 |
+
"step": 280
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.038805125510327824,
|
111 |
+
"grad_norm": 0.761584997177124,
|
112 |
+
"learning_rate": 1.29366106080207e-06,
|
113 |
+
"loss": 3.0019,
|
114 |
+
"step": 300
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.04139213387768301,
|
118 |
+
"grad_norm": 0.7120524644851685,
|
119 |
+
"learning_rate": 1.3799051315222079e-06,
|
120 |
+
"loss": 2.9614,
|
121 |
+
"step": 320
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.0439791422450382,
|
125 |
+
"grad_norm": 0.6938987374305725,
|
126 |
+
"learning_rate": 1.4661492022423459e-06,
|
127 |
+
"loss": 2.9435,
|
128 |
+
"step": 340
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.04656615061239339,
|
132 |
+
"grad_norm": 0.7532190680503845,
|
133 |
+
"learning_rate": 1.5523932729624839e-06,
|
134 |
+
"loss": 2.9194,
|
135 |
+
"step": 360
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.049153158979748576,
|
139 |
+
"grad_norm": 0.7144018411636353,
|
140 |
+
"learning_rate": 1.6386373436826219e-06,
|
141 |
+
"loss": 2.909,
|
142 |
+
"step": 380
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.051740167347103766,
|
146 |
+
"grad_norm": 0.7019342184066772,
|
147 |
+
"learning_rate": 1.72488141440276e-06,
|
148 |
+
"loss": 2.8771,
|
149 |
+
"step": 400
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.05432717571445895,
|
153 |
+
"grad_norm": 0.7003944516181946,
|
154 |
+
"learning_rate": 1.8111254851228978e-06,
|
155 |
+
"loss": 2.892,
|
156 |
+
"step": 420
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.05691418408181414,
|
160 |
+
"grad_norm": 0.7309603095054626,
|
161 |
+
"learning_rate": 1.897369555843036e-06,
|
162 |
+
"loss": 2.8603,
|
163 |
+
"step": 440
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.05950119244916933,
|
167 |
+
"grad_norm": 0.6825790405273438,
|
168 |
+
"learning_rate": 1.983613626563174e-06,
|
169 |
+
"loss": 2.8596,
|
170 |
+
"step": 460
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.06208820081652452,
|
174 |
+
"grad_norm": 0.6874191164970398,
|
175 |
+
"learning_rate": 2.0698576972833122e-06,
|
176 |
+
"loss": 2.8482,
|
177 |
+
"step": 480
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.0646752091838797,
|
181 |
+
"grad_norm": 0.7430766224861145,
|
182 |
+
"learning_rate": 2.15610176800345e-06,
|
183 |
+
"loss": 2.8446,
|
184 |
+
"step": 500
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.06726221755123489,
|
188 |
+
"grad_norm": 0.7108047008514404,
|
189 |
+
"learning_rate": 2.2423458387235882e-06,
|
190 |
+
"loss": 2.828,
|
191 |
+
"step": 520
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.06984922591859008,
|
195 |
+
"grad_norm": 0.7121191620826721,
|
196 |
+
"learning_rate": 2.328589909443726e-06,
|
197 |
+
"loss": 2.8002,
|
198 |
+
"step": 540
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.07243623428594527,
|
202 |
+
"grad_norm": 0.7068054676055908,
|
203 |
+
"learning_rate": 2.414833980163864e-06,
|
204 |
+
"loss": 2.8119,
|
205 |
+
"step": 560
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.07502324265330046,
|
209 |
+
"grad_norm": 0.6924973726272583,
|
210 |
+
"learning_rate": 2.501078050884002e-06,
|
211 |
+
"loss": 2.7846,
|
212 |
+
"step": 580
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.07761025102065565,
|
216 |
+
"grad_norm": 0.7206343412399292,
|
217 |
+
"learning_rate": 2.58732212160414e-06,
|
218 |
+
"loss": 2.7896,
|
219 |
+
"step": 600
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.08019725938801084,
|
223 |
+
"grad_norm": 0.7203959822654724,
|
224 |
+
"learning_rate": 2.673566192324278e-06,
|
225 |
+
"loss": 2.7793,
|
226 |
+
"step": 620
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.08278426775536601,
|
230 |
+
"grad_norm": 0.7108203172683716,
|
231 |
+
"learning_rate": 2.7598102630444157e-06,
|
232 |
+
"loss": 2.7642,
|
233 |
+
"step": 640
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.0853712761227212,
|
237 |
+
"grad_norm": 0.7053371667861938,
|
238 |
+
"learning_rate": 2.846054333764554e-06,
|
239 |
+
"loss": 2.7588,
|
240 |
+
"step": 660
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.0879582844900764,
|
244 |
+
"grad_norm": 0.6986986398696899,
|
245 |
+
"learning_rate": 2.9322984044846917e-06,
|
246 |
+
"loss": 2.7453,
|
247 |
+
"step": 680
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.09054529285743158,
|
251 |
+
"grad_norm": 0.7130378484725952,
|
252 |
+
"learning_rate": 3.01854247520483e-06,
|
253 |
+
"loss": 2.7249,
|
254 |
+
"step": 700
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.09313230122478677,
|
258 |
+
"grad_norm": 0.7068546414375305,
|
259 |
+
"learning_rate": 3.1047865459249677e-06,
|
260 |
+
"loss": 2.7134,
|
261 |
+
"step": 720
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.09571930959214196,
|
265 |
+
"grad_norm": 0.7224396467208862,
|
266 |
+
"learning_rate": 3.191030616645106e-06,
|
267 |
+
"loss": 2.718,
|
268 |
+
"step": 740
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.09830631795949715,
|
272 |
+
"grad_norm": 0.7299512624740601,
|
273 |
+
"learning_rate": 3.2772746873652437e-06,
|
274 |
+
"loss": 2.7049,
|
275 |
+
"step": 760
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.10089332632685234,
|
279 |
+
"grad_norm": 0.7126713991165161,
|
280 |
+
"learning_rate": 3.363518758085382e-06,
|
281 |
+
"loss": 2.7199,
|
282 |
+
"step": 780
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.10348033469420753,
|
286 |
+
"grad_norm": 0.6644526720046997,
|
287 |
+
"learning_rate": 3.44976282880552e-06,
|
288 |
+
"loss": 2.7046,
|
289 |
+
"step": 800
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.10606734306156272,
|
293 |
+
"grad_norm": 0.7410451769828796,
|
294 |
+
"learning_rate": 3.536006899525658e-06,
|
295 |
+
"loss": 2.7012,
|
296 |
+
"step": 820
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.1086543514289179,
|
300 |
+
"grad_norm": 0.7218043208122253,
|
301 |
+
"learning_rate": 3.6222509702457957e-06,
|
302 |
+
"loss": 2.71,
|
303 |
+
"step": 840
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.11124135979627309,
|
307 |
+
"grad_norm": 0.6941894292831421,
|
308 |
+
"learning_rate": 3.708495040965934e-06,
|
309 |
+
"loss": 2.7035,
|
310 |
+
"step": 860
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.11382836816362828,
|
314 |
+
"grad_norm": 0.6824482679367065,
|
315 |
+
"learning_rate": 3.794739111686072e-06,
|
316 |
+
"loss": 2.6741,
|
317 |
+
"step": 880
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.11641537653098347,
|
321 |
+
"grad_norm": 0.7253878712654114,
|
322 |
+
"learning_rate": 3.88098318240621e-06,
|
323 |
+
"loss": 2.6831,
|
324 |
+
"step": 900
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.11900238489833866,
|
328 |
+
"grad_norm": 0.6949134469032288,
|
329 |
+
"learning_rate": 3.967227253126348e-06,
|
330 |
+
"loss": 2.6674,
|
331 |
+
"step": 920
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.12158939326569385,
|
335 |
+
"grad_norm": 0.7096832394599915,
|
336 |
+
"learning_rate": 4.053471323846485e-06,
|
337 |
+
"loss": 2.674,
|
338 |
+
"step": 940
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.12417640163304904,
|
342 |
+
"grad_norm": 0.6938119530677795,
|
343 |
+
"learning_rate": 4.1397153945666245e-06,
|
344 |
+
"loss": 2.6533,
|
345 |
+
"step": 960
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.12676341000040423,
|
349 |
+
"grad_norm": 0.6781166195869446,
|
350 |
+
"learning_rate": 4.225959465286762e-06,
|
351 |
+
"loss": 2.6426,
|
352 |
+
"step": 980
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.1293504183677594,
|
356 |
+
"grad_norm": 0.7600920796394348,
|
357 |
+
"learning_rate": 4.3122035360069e-06,
|
358 |
+
"loss": 2.6454,
|
359 |
+
"step": 1000
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.1319374267351146,
|
363 |
+
"grad_norm": 0.6884315609931946,
|
364 |
+
"learning_rate": 4.398447606727037e-06,
|
365 |
+
"loss": 2.6324,
|
366 |
+
"step": 1020
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.13452443510246978,
|
370 |
+
"grad_norm": 0.7092069387435913,
|
371 |
+
"learning_rate": 4.4846916774471764e-06,
|
372 |
+
"loss": 2.6181,
|
373 |
+
"step": 1040
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.13711144346982498,
|
377 |
+
"grad_norm": 0.729020357131958,
|
378 |
+
"learning_rate": 4.570935748167314e-06,
|
379 |
+
"loss": 2.6217,
|
380 |
+
"step": 1060
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.13969845183718016,
|
384 |
+
"grad_norm": 0.7104108333587646,
|
385 |
+
"learning_rate": 4.657179818887452e-06,
|
386 |
+
"loss": 2.6152,
|
387 |
+
"step": 1080
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.14228546020453534,
|
391 |
+
"grad_norm": 0.8092931509017944,
|
392 |
+
"learning_rate": 4.743423889607589e-06,
|
393 |
+
"loss": 2.621,
|
394 |
+
"step": 1100
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.14487246857189054,
|
398 |
+
"grad_norm": 0.6620950102806091,
|
399 |
+
"learning_rate": 4.829667960327728e-06,
|
400 |
+
"loss": 2.6166,
|
401 |
+
"step": 1120
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.14745947693924571,
|
405 |
+
"grad_norm": 0.6813467741012573,
|
406 |
+
"learning_rate": 4.915912031047866e-06,
|
407 |
+
"loss": 2.6171,
|
408 |
+
"step": 1140
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.15004648530660092,
|
412 |
+
"grad_norm": 0.7140293121337891,
|
413 |
+
"learning_rate": 5.002156101768004e-06,
|
414 |
+
"loss": 2.5911,
|
415 |
+
"step": 1160
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.1526334936739561,
|
419 |
+
"grad_norm": 0.7278040051460266,
|
420 |
+
"learning_rate": 5.088400172488141e-06,
|
421 |
+
"loss": 2.6055,
|
422 |
+
"step": 1180
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.1552205020413113,
|
426 |
+
"grad_norm": 0.7283148169517517,
|
427 |
+
"learning_rate": 5.17464424320828e-06,
|
428 |
+
"loss": 2.6054,
|
429 |
+
"step": 1200
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.15780751040866647,
|
433 |
+
"grad_norm": 0.7109535932540894,
|
434 |
+
"learning_rate": 5.260888313928419e-06,
|
435 |
+
"loss": 2.56,
|
436 |
+
"step": 1220
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.16039451877602168,
|
440 |
+
"grad_norm": 0.7203260064125061,
|
441 |
+
"learning_rate": 5.347132384648556e-06,
|
442 |
+
"loss": 2.578,
|
443 |
+
"step": 1240
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.16298152714337685,
|
447 |
+
"grad_norm": 0.7385180592536926,
|
448 |
+
"learning_rate": 5.433376455368694e-06,
|
449 |
+
"loss": 2.5829,
|
450 |
+
"step": 1260
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.16556853551073203,
|
454 |
+
"grad_norm": 0.7511777281761169,
|
455 |
+
"learning_rate": 5.5196205260888315e-06,
|
456 |
+
"loss": 2.5703,
|
457 |
+
"step": 1280
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.16815554387808723,
|
461 |
+
"grad_norm": 0.7461130619049072,
|
462 |
+
"learning_rate": 5.60586459680897e-06,
|
463 |
+
"loss": 2.5891,
|
464 |
+
"step": 1300
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.1707425522454424,
|
468 |
+
"grad_norm": 0.7192751169204712,
|
469 |
+
"learning_rate": 5.692108667529108e-06,
|
470 |
+
"loss": 2.552,
|
471 |
+
"step": 1320
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.1733295606127976,
|
475 |
+
"grad_norm": 0.7672246694564819,
|
476 |
+
"learning_rate": 5.778352738249245e-06,
|
477 |
+
"loss": 2.5451,
|
478 |
+
"step": 1340
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.1759165689801528,
|
482 |
+
"grad_norm": 0.8286859393119812,
|
483 |
+
"learning_rate": 5.8645968089693835e-06,
|
484 |
+
"loss": 2.5691,
|
485 |
+
"step": 1360
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.178503577347508,
|
489 |
+
"grad_norm": 0.8903458714485168,
|
490 |
+
"learning_rate": 5.9508408796895225e-06,
|
491 |
+
"loss": 2.5717,
|
492 |
+
"step": 1380
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.18109058571486317,
|
496 |
+
"grad_norm": 0.7192072868347168,
|
497 |
+
"learning_rate": 6.03708495040966e-06,
|
498 |
+
"loss": 2.547,
|
499 |
+
"step": 1400
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.18367759408221837,
|
503 |
+
"grad_norm": 0.7470182776451111,
|
504 |
+
"learning_rate": 6.123329021129798e-06,
|
505 |
+
"loss": 2.5309,
|
506 |
+
"step": 1420
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.18626460244957355,
|
510 |
+
"grad_norm": 0.7186440229415894,
|
511 |
+
"learning_rate": 6.2095730918499354e-06,
|
512 |
+
"loss": 2.5433,
|
513 |
+
"step": 1440
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.18885161081692872,
|
517 |
+
"grad_norm": 0.7359221577644348,
|
518 |
+
"learning_rate": 6.295817162570074e-06,
|
519 |
+
"loss": 2.5482,
|
520 |
+
"step": 1460
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.19143861918428393,
|
524 |
+
"grad_norm": 0.7859694957733154,
|
525 |
+
"learning_rate": 6.382061233290212e-06,
|
526 |
+
"loss": 2.5371,
|
527 |
+
"step": 1480
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.1940256275516391,
|
531 |
+
"grad_norm": 0.7339861392974854,
|
532 |
+
"learning_rate": 6.468305304010349e-06,
|
533 |
+
"loss": 2.5217,
|
534 |
+
"step": 1500
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.1966126359189943,
|
538 |
+
"grad_norm": 0.7527260780334473,
|
539 |
+
"learning_rate": 6.554549374730487e-06,
|
540 |
+
"loss": 2.5183,
|
541 |
+
"step": 1520
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.19919964428634948,
|
545 |
+
"grad_norm": 0.7345518469810486,
|
546 |
+
"learning_rate": 6.6407934454506265e-06,
|
547 |
+
"loss": 2.5249,
|
548 |
+
"step": 1540
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.20178665265370468,
|
552 |
+
"grad_norm": 0.736298680305481,
|
553 |
+
"learning_rate": 6.727037516170764e-06,
|
554 |
+
"loss": 2.5184,
|
555 |
+
"step": 1560
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.20437366102105986,
|
559 |
+
"grad_norm": 0.7677698135375977,
|
560 |
+
"learning_rate": 6.813281586890902e-06,
|
561 |
+
"loss": 2.5134,
|
562 |
+
"step": 1580
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.20696066938841506,
|
566 |
+
"grad_norm": 0.7627900838851929,
|
567 |
+
"learning_rate": 6.89952565761104e-06,
|
568 |
+
"loss": 2.5064,
|
569 |
+
"step": 1600
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.20954767775577024,
|
573 |
+
"grad_norm": 0.7290985584259033,
|
574 |
+
"learning_rate": 6.985769728331178e-06,
|
575 |
+
"loss": 2.5124,
|
576 |
+
"step": 1620
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.21213468612312544,
|
580 |
+
"grad_norm": 0.7347148060798645,
|
581 |
+
"learning_rate": 7.072013799051316e-06,
|
582 |
+
"loss": 2.4901,
|
583 |
+
"step": 1640
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.21472169449048062,
|
587 |
+
"grad_norm": 0.7257357239723206,
|
588 |
+
"learning_rate": 7.158257869771453e-06,
|
589 |
+
"loss": 2.4884,
|
590 |
+
"step": 1660
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.2173087028578358,
|
594 |
+
"grad_norm": 0.7803710699081421,
|
595 |
+
"learning_rate": 7.244501940491591e-06,
|
596 |
+
"loss": 2.4899,
|
597 |
+
"step": 1680
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.219895711225191,
|
601 |
+
"grad_norm": 0.6987377405166626,
|
602 |
+
"learning_rate": 7.33074601121173e-06,
|
603 |
+
"loss": 2.5001,
|
604 |
+
"step": 1700
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.22248271959254617,
|
608 |
+
"grad_norm": 0.6989637017250061,
|
609 |
+
"learning_rate": 7.416990081931868e-06,
|
610 |
+
"loss": 2.4941,
|
611 |
+
"step": 1720
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.22506972795990138,
|
615 |
+
"grad_norm": 0.7391577363014221,
|
616 |
+
"learning_rate": 7.503234152652006e-06,
|
617 |
+
"loss": 2.4811,
|
618 |
+
"step": 1740
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.22765673632725655,
|
622 |
+
"grad_norm": 0.7664337754249573,
|
623 |
+
"learning_rate": 7.589478223372144e-06,
|
624 |
+
"loss": 2.4806,
|
625 |
+
"step": 1760
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.23024374469461176,
|
629 |
+
"grad_norm": 0.7150381207466125,
|
630 |
+
"learning_rate": 7.675722294092282e-06,
|
631 |
+
"loss": 2.4674,
|
632 |
+
"step": 1780
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.23283075306196693,
|
636 |
+
"grad_norm": 0.7978541254997253,
|
637 |
+
"learning_rate": 7.76196636481242e-06,
|
638 |
+
"loss": 2.4633,
|
639 |
+
"step": 1800
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.23541776142932214,
|
643 |
+
"grad_norm": 0.7218653559684753,
|
644 |
+
"learning_rate": 7.848210435532557e-06,
|
645 |
+
"loss": 2.4589,
|
646 |
+
"step": 1820
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.2380047697966773,
|
650 |
+
"grad_norm": 0.723008930683136,
|
651 |
+
"learning_rate": 7.934454506252696e-06,
|
652 |
+
"loss": 2.467,
|
653 |
+
"step": 1840
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.2405917781640325,
|
657 |
+
"grad_norm": 0.7375757098197937,
|
658 |
+
"learning_rate": 8.020698576972833e-06,
|
659 |
+
"loss": 2.4812,
|
660 |
+
"step": 1860
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.2431787865313877,
|
664 |
+
"grad_norm": 0.7501986026763916,
|
665 |
+
"learning_rate": 8.10694264769297e-06,
|
666 |
+
"loss": 2.4587,
|
667 |
+
"step": 1880
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.24576579489874287,
|
671 |
+
"grad_norm": 0.7394606471061707,
|
672 |
+
"learning_rate": 8.19318671841311e-06,
|
673 |
+
"loss": 2.4514,
|
674 |
+
"step": 1900
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.24835280326609807,
|
678 |
+
"grad_norm": 0.7856109738349915,
|
679 |
+
"learning_rate": 8.279430789133249e-06,
|
680 |
+
"loss": 2.45,
|
681 |
+
"step": 1920
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.25093981163345325,
|
685 |
+
"grad_norm": 0.7603466510772705,
|
686 |
+
"learning_rate": 8.365674859853386e-06,
|
687 |
+
"loss": 2.4341,
|
688 |
+
"step": 1940
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.25352682000080845,
|
692 |
+
"grad_norm": 0.7223484516143799,
|
693 |
+
"learning_rate": 8.451918930573524e-06,
|
694 |
+
"loss": 2.4349,
|
695 |
+
"step": 1960
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.25611382836816365,
|
699 |
+
"grad_norm": 0.7488518357276917,
|
700 |
+
"learning_rate": 8.538163001293663e-06,
|
701 |
+
"loss": 2.4417,
|
702 |
+
"step": 1980
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.2587008367355188,
|
706 |
+
"grad_norm": 0.83389812707901,
|
707 |
+
"learning_rate": 8.6244070720138e-06,
|
708 |
+
"loss": 2.4266,
|
709 |
+
"step": 2000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.261287845102874,
|
713 |
+
"grad_norm": 0.7574110627174377,
|
714 |
+
"learning_rate": 8.710651142733937e-06,
|
715 |
+
"loss": 2.4471,
|
716 |
+
"step": 2020
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.2638748534702292,
|
720 |
+
"grad_norm": 0.7482550740242004,
|
721 |
+
"learning_rate": 8.796895213454075e-06,
|
722 |
+
"loss": 2.4368,
|
723 |
+
"step": 2040
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.26646186183758436,
|
727 |
+
"grad_norm": 0.7341257333755493,
|
728 |
+
"learning_rate": 8.883139284174214e-06,
|
729 |
+
"loss": 2.4303,
|
730 |
+
"step": 2060
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.26904887020493956,
|
734 |
+
"grad_norm": 0.764855682849884,
|
735 |
+
"learning_rate": 8.969383354894353e-06,
|
736 |
+
"loss": 2.4176,
|
737 |
+
"step": 2080
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.27163587857229476,
|
741 |
+
"grad_norm": 0.7559799551963806,
|
742 |
+
"learning_rate": 9.055627425614489e-06,
|
743 |
+
"loss": 2.4088,
|
744 |
+
"step": 2100
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.27422288693964997,
|
748 |
+
"grad_norm": 0.7435436844825745,
|
749 |
+
"learning_rate": 9.141871496334628e-06,
|
750 |
+
"loss": 2.4241,
|
751 |
+
"step": 2120
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.2768098953070051,
|
755 |
+
"grad_norm": 0.7100109457969666,
|
756 |
+
"learning_rate": 9.228115567054767e-06,
|
757 |
+
"loss": 2.4122,
|
758 |
+
"step": 2140
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.2793969036743603,
|
762 |
+
"grad_norm": 0.7357873320579529,
|
763 |
+
"learning_rate": 9.314359637774904e-06,
|
764 |
+
"loss": 2.425,
|
765 |
+
"step": 2160
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.2819839120417155,
|
769 |
+
"grad_norm": 0.7281599640846252,
|
770 |
+
"learning_rate": 9.400603708495041e-06,
|
771 |
+
"loss": 2.4242,
|
772 |
+
"step": 2180
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.28457092040907067,
|
776 |
+
"grad_norm": 0.7816882729530334,
|
777 |
+
"learning_rate": 9.486847779215179e-06,
|
778 |
+
"loss": 2.4115,
|
779 |
+
"step": 2200
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.2871579287764259,
|
783 |
+
"grad_norm": 0.7402174472808838,
|
784 |
+
"learning_rate": 9.573091849935318e-06,
|
785 |
+
"loss": 2.4253,
|
786 |
+
"step": 2220
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.2897449371437811,
|
790 |
+
"grad_norm": 0.7378434538841248,
|
791 |
+
"learning_rate": 9.659335920655457e-06,
|
792 |
+
"loss": 2.4015,
|
793 |
+
"step": 2240
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.2923319455111363,
|
797 |
+
"grad_norm": 0.7792133688926697,
|
798 |
+
"learning_rate": 9.745579991375592e-06,
|
799 |
+
"loss": 2.3947,
|
800 |
+
"step": 2260
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.29491895387849143,
|
804 |
+
"grad_norm": 0.7180085778236389,
|
805 |
+
"learning_rate": 9.831824062095732e-06,
|
806 |
+
"loss": 2.3975,
|
807 |
+
"step": 2280
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.29750596224584663,
|
811 |
+
"grad_norm": 0.7536414861679077,
|
812 |
+
"learning_rate": 9.91806813281587e-06,
|
813 |
+
"loss": 2.4052,
|
814 |
+
"step": 2300
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.30009297061320184,
|
818 |
+
"grad_norm": 0.7593511939048767,
|
819 |
+
"learning_rate": 9.999999943356089e-06,
|
820 |
+
"loss": 2.3856,
|
821 |
+
"step": 2320
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.30267997898055704,
|
825 |
+
"grad_norm": 0.6879323720932007,
|
826 |
+
"learning_rate": 9.999975020055695e-06,
|
827 |
+
"loss": 2.4107,
|
828 |
+
"step": 2340
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.3052669873479122,
|
832 |
+
"grad_norm": 0.7193155884742737,
|
833 |
+
"learning_rate": 9.999904781886476e-06,
|
834 |
+
"loss": 2.3872,
|
835 |
+
"step": 2360
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.3078539957152674,
|
839 |
+
"grad_norm": 0.7621170282363892,
|
840 |
+
"learning_rate": 9.999789229485002e-06,
|
841 |
+
"loss": 2.3844,
|
842 |
+
"step": 2380
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.3104410040826226,
|
846 |
+
"grad_norm": 0.7357332110404968,
|
847 |
+
"learning_rate": 9.999628363898525e-06,
|
848 |
+
"loss": 2.3863,
|
849 |
+
"step": 2400
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.31302801244997774,
|
853 |
+
"grad_norm": 0.753011167049408,
|
854 |
+
"learning_rate": 9.999422186584978e-06,
|
855 |
+
"loss": 2.3807,
|
856 |
+
"step": 2420
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.31561502081733295,
|
860 |
+
"grad_norm": 0.7547248005867004,
|
861 |
+
"learning_rate": 9.999170699412942e-06,
|
862 |
+
"loss": 2.3691,
|
863 |
+
"step": 2440
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.31820202918468815,
|
867 |
+
"grad_norm": 0.7450150847434998,
|
868 |
+
"learning_rate": 9.998873904661655e-06,
|
869 |
+
"loss": 2.3495,
|
870 |
+
"step": 2460
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.32078903755204335,
|
874 |
+
"grad_norm": 0.7460102438926697,
|
875 |
+
"learning_rate": 9.998531805020974e-06,
|
876 |
+
"loss": 2.3582,
|
877 |
+
"step": 2480
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.3233760459193985,
|
881 |
+
"grad_norm": 0.7281093597412109,
|
882 |
+
"learning_rate": 9.998144403591352e-06,
|
883 |
+
"loss": 2.3559,
|
884 |
+
"step": 2500
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.3259630542867537,
|
888 |
+
"grad_norm": 0.7635049223899841,
|
889 |
+
"learning_rate": 9.99771170388382e-06,
|
890 |
+
"loss": 2.3668,
|
891 |
+
"step": 2520
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.3285500626541089,
|
895 |
+
"grad_norm": 0.7504300475120544,
|
896 |
+
"learning_rate": 9.997233709819935e-06,
|
897 |
+
"loss": 2.3642,
|
898 |
+
"step": 2540
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.33113707102146406,
|
902 |
+
"grad_norm": 0.73244309425354,
|
903 |
+
"learning_rate": 9.996710425731776e-06,
|
904 |
+
"loss": 2.3634,
|
905 |
+
"step": 2560
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.33372407938881926,
|
909 |
+
"grad_norm": 0.816100537776947,
|
910 |
+
"learning_rate": 9.996141856361871e-06,
|
911 |
+
"loss": 2.3405,
|
912 |
+
"step": 2580
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.33631108775617446,
|
916 |
+
"grad_norm": 0.7125614285469055,
|
917 |
+
"learning_rate": 9.995528006863175e-06,
|
918 |
+
"loss": 2.3594,
|
919 |
+
"step": 2600
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.33889809612352967,
|
923 |
+
"grad_norm": 0.7901700735092163,
|
924 |
+
"learning_rate": 9.994868882799022e-06,
|
925 |
+
"loss": 2.3636,
|
926 |
+
"step": 2620
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.3414851044908848,
|
930 |
+
"grad_norm": 0.7499126195907593,
|
931 |
+
"learning_rate": 9.994164490143062e-06,
|
932 |
+
"loss": 2.36,
|
933 |
+
"step": 2640
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.34407211285824,
|
937 |
+
"grad_norm": 0.78279048204422,
|
938 |
+
"learning_rate": 9.99341483527922e-06,
|
939 |
+
"loss": 2.3685,
|
940 |
+
"step": 2660
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.3466591212255952,
|
944 |
+
"grad_norm": 0.7683995366096497,
|
945 |
+
"learning_rate": 9.992619925001632e-06,
|
946 |
+
"loss": 2.3532,
|
947 |
+
"step": 2680
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.3492461295929504,
|
951 |
+
"grad_norm": 0.7231781482696533,
|
952 |
+
"learning_rate": 9.991779766514586e-06,
|
953 |
+
"loss": 2.377,
|
954 |
+
"step": 2700
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.3518331379603056,
|
958 |
+
"grad_norm": 0.7408224940299988,
|
959 |
+
"learning_rate": 9.990894367432453e-06,
|
960 |
+
"loss": 2.3406,
|
961 |
+
"step": 2720
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.3544201463276608,
|
965 |
+
"grad_norm": 0.7654145956039429,
|
966 |
+
"learning_rate": 9.989963735779623e-06,
|
967 |
+
"loss": 2.3627,
|
968 |
+
"step": 2740
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.357007154695016,
|
972 |
+
"grad_norm": 0.7166858315467834,
|
973 |
+
"learning_rate": 9.988987879990428e-06,
|
974 |
+
"loss": 2.3343,
|
975 |
+
"step": 2760
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.35959416306237113,
|
979 |
+
"grad_norm": 0.79310142993927,
|
980 |
+
"learning_rate": 9.987966808909069e-06,
|
981 |
+
"loss": 2.3521,
|
982 |
+
"step": 2780
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.36218117142972633,
|
986 |
+
"grad_norm": 0.7726064324378967,
|
987 |
+
"learning_rate": 9.98690053178953e-06,
|
988 |
+
"loss": 2.3408,
|
989 |
+
"step": 2800
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.36476817979708154,
|
993 |
+
"grad_norm": 0.7428059577941895,
|
994 |
+
"learning_rate": 9.985789058295501e-06,
|
995 |
+
"loss": 2.3238,
|
996 |
+
"step": 2820
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.36735518816443674,
|
1000 |
+
"grad_norm": 0.7808260321617126,
|
1001 |
+
"learning_rate": 9.984632398500289e-06,
|
1002 |
+
"loss": 2.3164,
|
1003 |
+
"step": 2840
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.3699421965317919,
|
1007 |
+
"grad_norm": 0.7835705280303955,
|
1008 |
+
"learning_rate": 9.983430562886723e-06,
|
1009 |
+
"loss": 2.343,
|
1010 |
+
"step": 2860
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.3725292048991471,
|
1014 |
+
"grad_norm": 0.7703275680541992,
|
1015 |
+
"learning_rate": 9.982183562347063e-06,
|
1016 |
+
"loss": 2.3354,
|
1017 |
+
"step": 2880
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.3751162132665023,
|
1021 |
+
"grad_norm": 0.7307262420654297,
|
1022 |
+
"learning_rate": 9.980891408182897e-06,
|
1023 |
+
"loss": 2.3445,
|
1024 |
+
"step": 2900
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.37770322163385744,
|
1028 |
+
"grad_norm": 0.6830443143844604,
|
1029 |
+
"learning_rate": 9.979554112105045e-06,
|
1030 |
+
"loss": 2.3437,
|
1031 |
+
"step": 2920
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.38029023000121265,
|
1035 |
+
"grad_norm": 0.7646154761314392,
|
1036 |
+
"learning_rate": 9.978171686233445e-06,
|
1037 |
+
"loss": 2.3316,
|
1038 |
+
"step": 2940
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.38287723836856785,
|
1042 |
+
"grad_norm": 0.7598294615745544,
|
1043 |
+
"learning_rate": 9.97674414309705e-06,
|
1044 |
+
"loss": 2.3135,
|
1045 |
+
"step": 2960
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.38546424673592306,
|
1049 |
+
"grad_norm": 0.7368634343147278,
|
1050 |
+
"learning_rate": 9.975271495633709e-06,
|
1051 |
+
"loss": 2.3189,
|
1052 |
+
"step": 2980
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.3880512551032782,
|
1056 |
+
"grad_norm": 0.7349269390106201,
|
1057 |
+
"learning_rate": 9.973753757190057e-06,
|
1058 |
+
"loss": 2.307,
|
1059 |
+
"step": 3000
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.3906382634706334,
|
1063 |
+
"grad_norm": 0.7512723803520203,
|
1064 |
+
"learning_rate": 9.972190941521382e-06,
|
1065 |
+
"loss": 2.3195,
|
1066 |
+
"step": 3020
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.3932252718379886,
|
1070 |
+
"grad_norm": 0.7430227398872375,
|
1071 |
+
"learning_rate": 9.970583062791517e-06,
|
1072 |
+
"loss": 2.3087,
|
1073 |
+
"step": 3040
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.3958122802053438,
|
1077 |
+
"grad_norm": 0.7576317191123962,
|
1078 |
+
"learning_rate": 9.968930135572694e-06,
|
1079 |
+
"loss": 2.3,
|
1080 |
+
"step": 3060
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.39839928857269896,
|
1084 |
+
"grad_norm": 0.7394402623176575,
|
1085 |
+
"learning_rate": 9.967232174845426e-06,
|
1086 |
+
"loss": 2.3164,
|
1087 |
+
"step": 3080
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.40098629694005417,
|
1091 |
+
"grad_norm": 0.7061188220977783,
|
1092 |
+
"learning_rate": 9.965489195998363e-06,
|
1093 |
+
"loss": 2.3187,
|
1094 |
+
"step": 3100
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.40357330530740937,
|
1098 |
+
"grad_norm": 0.7332024574279785,
|
1099 |
+
"learning_rate": 9.963701214828154e-06,
|
1100 |
+
"loss": 2.3085,
|
1101 |
+
"step": 3120
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.4061603136747645,
|
1105 |
+
"grad_norm": 0.663925051689148,
|
1106 |
+
"learning_rate": 9.961868247539308e-06,
|
1107 |
+
"loss": 2.2978,
|
1108 |
+
"step": 3140
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.4087473220421197,
|
1112 |
+
"grad_norm": 0.7256314158439636,
|
1113 |
+
"learning_rate": 9.959990310744042e-06,
|
1114 |
+
"loss": 2.3209,
|
1115 |
+
"step": 3160
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.4113343304094749,
|
1119 |
+
"grad_norm": 0.711919903755188,
|
1120 |
+
"learning_rate": 9.958067421462133e-06,
|
1121 |
+
"loss": 2.3041,
|
1122 |
+
"step": 3180
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.41392133877683013,
|
1126 |
+
"grad_norm": 0.714450478553772,
|
1127 |
+
"learning_rate": 9.956099597120762e-06,
|
1128 |
+
"loss": 2.2789,
|
1129 |
+
"step": 3200
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.4165083471441853,
|
1133 |
+
"grad_norm": 0.7216628193855286,
|
1134 |
+
"learning_rate": 9.95408685555436e-06,
|
1135 |
+
"loss": 2.3056,
|
1136 |
+
"step": 3220
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.4190953555115405,
|
1140 |
+
"grad_norm": 0.6629658341407776,
|
1141 |
+
"learning_rate": 9.952029215004441e-06,
|
1142 |
+
"loss": 2.3001,
|
1143 |
+
"step": 3240
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.4216823638788957,
|
1147 |
+
"grad_norm": 0.8131959438323975,
|
1148 |
+
"learning_rate": 9.949926694119443e-06,
|
1149 |
+
"loss": 2.2881,
|
1150 |
+
"step": 3260
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.4242693722462509,
|
1154 |
+
"grad_norm": 0.7133468389511108,
|
1155 |
+
"learning_rate": 9.94777931195455e-06,
|
1156 |
+
"loss": 2.2902,
|
1157 |
+
"step": 3280
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.42685638061360603,
|
1161 |
+
"grad_norm": 0.7825130224227905,
|
1162 |
+
"learning_rate": 9.945587087971529e-06,
|
1163 |
+
"loss": 2.2829,
|
1164 |
+
"step": 3300
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.42944338898096124,
|
1168 |
+
"grad_norm": 0.6878073811531067,
|
1169 |
+
"learning_rate": 9.943350042038545e-06,
|
1170 |
+
"loss": 2.2844,
|
1171 |
+
"step": 3320
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.43203039734831644,
|
1175 |
+
"grad_norm": 0.7324455976486206,
|
1176 |
+
"learning_rate": 9.941068194429992e-06,
|
1177 |
+
"loss": 2.2932,
|
1178 |
+
"step": 3340
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.4346174057156716,
|
1182 |
+
"grad_norm": 0.7330353856086731,
|
1183 |
+
"learning_rate": 9.938741565826295e-06,
|
1184 |
+
"loss": 2.2611,
|
1185 |
+
"step": 3360
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.4372044140830268,
|
1189 |
+
"grad_norm": 0.8474377393722534,
|
1190 |
+
"learning_rate": 9.936370177313737e-06,
|
1191 |
+
"loss": 2.2938,
|
1192 |
+
"step": 3380
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.439791422450382,
|
1196 |
+
"grad_norm": 0.776228666305542,
|
1197 |
+
"learning_rate": 9.933954050384253e-06,
|
1198 |
+
"loss": 2.292,
|
1199 |
+
"step": 3400
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.4423784308177372,
|
1203 |
+
"grad_norm": 0.7257934212684631,
|
1204 |
+
"learning_rate": 9.931493206935249e-06,
|
1205 |
+
"loss": 2.2964,
|
1206 |
+
"step": 3420
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.44496543918509235,
|
1210 |
+
"grad_norm": 0.7738561034202576,
|
1211 |
+
"learning_rate": 9.928987669269397e-06,
|
1212 |
+
"loss": 2.2585,
|
1213 |
+
"step": 3440
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.44755244755244755,
|
1217 |
+
"grad_norm": 0.6888708472251892,
|
1218 |
+
"learning_rate": 9.926437460094431e-06,
|
1219 |
+
"loss": 2.281,
|
1220 |
+
"step": 3460
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.45013945591980276,
|
1224 |
+
"grad_norm": 0.7120715975761414,
|
1225 |
+
"learning_rate": 9.923842602522948e-06,
|
1226 |
+
"loss": 2.2861,
|
1227 |
+
"step": 3480
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.4527264642871579,
|
1231 |
+
"grad_norm": 0.770353376865387,
|
1232 |
+
"learning_rate": 9.92120312007219e-06,
|
1233 |
+
"loss": 2.271,
|
1234 |
+
"step": 3500
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.4553134726545131,
|
1238 |
+
"grad_norm": 0.753852367401123,
|
1239 |
+
"learning_rate": 9.918519036663835e-06,
|
1240 |
+
"loss": 2.2592,
|
1241 |
+
"step": 3520
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.4579004810218683,
|
1245 |
+
"grad_norm": 0.7479904294013977,
|
1246 |
+
"learning_rate": 9.915790376623785e-06,
|
1247 |
+
"loss": 2.2691,
|
1248 |
+
"step": 3540
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.4604874893892235,
|
1252 |
+
"grad_norm": 0.7162041068077087,
|
1253 |
+
"learning_rate": 9.913017164681936e-06,
|
1254 |
+
"loss": 2.2637,
|
1255 |
+
"step": 3560
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.46307449775657866,
|
1259 |
+
"grad_norm": 0.6859399080276489,
|
1260 |
+
"learning_rate": 9.91019942597196e-06,
|
1261 |
+
"loss": 2.2424,
|
1262 |
+
"step": 3580
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.46566150612393387,
|
1266 |
+
"grad_norm": 0.7681860327720642,
|
1267 |
+
"learning_rate": 9.907337186031078e-06,
|
1268 |
+
"loss": 2.2758,
|
1269 |
+
"step": 3600
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.46824851449128907,
|
1273 |
+
"grad_norm": 0.7416828274726868,
|
1274 |
+
"learning_rate": 9.904430470799826e-06,
|
1275 |
+
"loss": 2.2715,
|
1276 |
+
"step": 3620
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.4708355228586443,
|
1280 |
+
"grad_norm": 0.7957201600074768,
|
1281 |
+
"learning_rate": 9.901479306621818e-06,
|
1282 |
+
"loss": 2.277,
|
1283 |
+
"step": 3640
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.4734225312259994,
|
1287 |
+
"grad_norm": 0.71152663230896,
|
1288 |
+
"learning_rate": 9.89848372024351e-06,
|
1289 |
+
"loss": 2.2831,
|
1290 |
+
"step": 3660
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.4760095395933546,
|
1294 |
+
"grad_norm": 0.6950436234474182,
|
1295 |
+
"learning_rate": 9.89544373881396e-06,
|
1296 |
+
"loss": 2.2678,
|
1297 |
+
"step": 3680
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.47859654796070983,
|
1301 |
+
"grad_norm": 0.7226356267929077,
|
1302 |
+
"learning_rate": 9.89235938988458e-06,
|
1303 |
+
"loss": 2.2549,
|
1304 |
+
"step": 3700
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.481183556328065,
|
1308 |
+
"grad_norm": 0.7032837867736816,
|
1309 |
+
"learning_rate": 9.88923070140888e-06,
|
1310 |
+
"loss": 2.2669,
|
1311 |
+
"step": 3720
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.4837705646954202,
|
1315 |
+
"grad_norm": 0.749229371547699,
|
1316 |
+
"learning_rate": 9.886057701742222e-06,
|
1317 |
+
"loss": 2.2421,
|
1318 |
+
"step": 3740
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.4863575730627754,
|
1322 |
+
"grad_norm": 0.7166919112205505,
|
1323 |
+
"learning_rate": 9.882840419641566e-06,
|
1324 |
+
"loss": 2.245,
|
1325 |
+
"step": 3760
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.4889445814301306,
|
1329 |
+
"grad_norm": 0.7276502847671509,
|
1330 |
+
"learning_rate": 9.879578884265198e-06,
|
1331 |
+
"loss": 2.2542,
|
1332 |
+
"step": 3780
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.49153158979748574,
|
1336 |
+
"grad_norm": 0.7321860194206238,
|
1337 |
+
"learning_rate": 9.876273125172476e-06,
|
1338 |
+
"loss": 2.2395,
|
1339 |
+
"step": 3800
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.49411859816484094,
|
1343 |
+
"grad_norm": 0.6959764361381531,
|
1344 |
+
"learning_rate": 9.872923172323559e-06,
|
1345 |
+
"loss": 2.2588,
|
1346 |
+
"step": 3820
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.49670560653219614,
|
1350 |
+
"grad_norm": 0.7237563729286194,
|
1351 |
+
"learning_rate": 9.869529056079133e-06,
|
1352 |
+
"loss": 2.2463,
|
1353 |
+
"step": 3840
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.4992926148995513,
|
1357 |
+
"grad_norm": 0.7536144256591797,
|
1358 |
+
"learning_rate": 9.866090807200135e-06,
|
1359 |
+
"loss": 2.2394,
|
1360 |
+
"step": 3860
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.5018796232669065,
|
1364 |
+
"grad_norm": 0.6835715770721436,
|
1365 |
+
"learning_rate": 9.862608456847484e-06,
|
1366 |
+
"loss": 2.2447,
|
1367 |
+
"step": 3880
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.5044666316342616,
|
1371 |
+
"grad_norm": 0.7627236247062683,
|
1372 |
+
"learning_rate": 9.859082036581787e-06,
|
1373 |
+
"loss": 2.2727,
|
1374 |
+
"step": 3900
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.5070536400016169,
|
1378 |
+
"grad_norm": 0.7260853052139282,
|
1379 |
+
"learning_rate": 9.855511578363057e-06,
|
1380 |
+
"loss": 2.2373,
|
1381 |
+
"step": 3920
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.509640648368972,
|
1385 |
+
"grad_norm": 0.7366577386856079,
|
1386 |
+
"learning_rate": 9.851897114550423e-06,
|
1387 |
+
"loss": 2.2583,
|
1388 |
+
"step": 3940
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.5122276567363273,
|
1392 |
+
"grad_norm": 0.718189001083374,
|
1393 |
+
"learning_rate": 9.848238677901844e-06,
|
1394 |
+
"loss": 2.2376,
|
1395 |
+
"step": 3960
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.5148146651036825,
|
1399 |
+
"grad_norm": 0.6988586783409119,
|
1400 |
+
"learning_rate": 9.844536301573798e-06,
|
1401 |
+
"loss": 2.2413,
|
1402 |
+
"step": 3980
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.5174016734710376,
|
1406 |
+
"grad_norm": 0.752648115158081,
|
1407 |
+
"learning_rate": 9.840790019120993e-06,
|
1408 |
+
"loss": 2.2346,
|
1409 |
+
"step": 4000
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.5199886818383929,
|
1413 |
+
"grad_norm": 0.8000548481941223,
|
1414 |
+
"learning_rate": 9.836999864496058e-06,
|
1415 |
+
"loss": 2.2365,
|
1416 |
+
"step": 4020
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.522575690205748,
|
1420 |
+
"grad_norm": 0.7324941158294678,
|
1421 |
+
"learning_rate": 9.833165872049235e-06,
|
1422 |
+
"loss": 2.2294,
|
1423 |
+
"step": 4040
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.5251626985731032,
|
1427 |
+
"grad_norm": 0.765869140625,
|
1428 |
+
"learning_rate": 9.829288076528071e-06,
|
1429 |
+
"loss": 2.2418,
|
1430 |
+
"step": 4060
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.5277497069404584,
|
1434 |
+
"grad_norm": 0.7222108244895935,
|
1435 |
+
"learning_rate": 9.825366513077104e-06,
|
1436 |
+
"loss": 2.2292,
|
1437 |
+
"step": 4080
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.5303367153078136,
|
1441 |
+
"grad_norm": 0.7359380722045898,
|
1442 |
+
"learning_rate": 9.821401217237535e-06,
|
1443 |
+
"loss": 2.2491,
|
1444 |
+
"step": 4100
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.5329237236751687,
|
1448 |
+
"grad_norm": 0.7288945317268372,
|
1449 |
+
"learning_rate": 9.817392224946916e-06,
|
1450 |
+
"loss": 2.2404,
|
1451 |
+
"step": 4120
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.535510732042524,
|
1455 |
+
"grad_norm": 0.7518214583396912,
|
1456 |
+
"learning_rate": 9.813339572538822e-06,
|
1457 |
+
"loss": 2.2381,
|
1458 |
+
"step": 4140
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.5380977404098791,
|
1462 |
+
"grad_norm": 0.753818154335022,
|
1463 |
+
"learning_rate": 9.809243296742516e-06,
|
1464 |
+
"loss": 2.2236,
|
1465 |
+
"step": 4160
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.5406847487772344,
|
1469 |
+
"grad_norm": 0.7281918525695801,
|
1470 |
+
"learning_rate": 9.805103434682628e-06,
|
1471 |
+
"loss": 2.2142,
|
1472 |
+
"step": 4180
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.5432717571445895,
|
1476 |
+
"grad_norm": 0.7605194449424744,
|
1477 |
+
"learning_rate": 9.800920023878803e-06,
|
1478 |
+
"loss": 2.2326,
|
1479 |
+
"step": 4200
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.5458587655119447,
|
1483 |
+
"grad_norm": 0.7266237139701843,
|
1484 |
+
"learning_rate": 9.796693102245376e-06,
|
1485 |
+
"loss": 2.2144,
|
1486 |
+
"step": 4220
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.5484457738792999,
|
1490 |
+
"grad_norm": 0.7575150728225708,
|
1491 |
+
"learning_rate": 9.792422708091014e-06,
|
1492 |
+
"loss": 2.2282,
|
1493 |
+
"step": 4240
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.5510327822466551,
|
1497 |
+
"grad_norm": 0.7097237706184387,
|
1498 |
+
"learning_rate": 9.788108880118383e-06,
|
1499 |
+
"loss": 2.2139,
|
1500 |
+
"step": 4260
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.5536197906140102,
|
1504 |
+
"grad_norm": 0.7074447870254517,
|
1505 |
+
"learning_rate": 9.783751657423787e-06,
|
1506 |
+
"loss": 2.2169,
|
1507 |
+
"step": 4280
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.5562067989813655,
|
1511 |
+
"grad_norm": 0.7193735241889954,
|
1512 |
+
"learning_rate": 9.779351079496821e-06,
|
1513 |
+
"loss": 2.2435,
|
1514 |
+
"step": 4300
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.5587938073487206,
|
1518 |
+
"grad_norm": 0.7104501128196716,
|
1519 |
+
"learning_rate": 9.774907186220005e-06,
|
1520 |
+
"loss": 2.198,
|
1521 |
+
"step": 4320
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.5613808157160758,
|
1525 |
+
"grad_norm": 0.6711876392364502,
|
1526 |
+
"learning_rate": 9.770420017868426e-06,
|
1527 |
+
"loss": 2.1927,
|
1528 |
+
"step": 4340
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.563967824083431,
|
1532 |
+
"grad_norm": 0.7272083163261414,
|
1533 |
+
"learning_rate": 9.765889615109379e-06,
|
1534 |
+
"loss": 2.2437,
|
1535 |
+
"step": 4360
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.5665548324507862,
|
1539 |
+
"grad_norm": 0.7311263680458069,
|
1540 |
+
"learning_rate": 9.761316019001991e-06,
|
1541 |
+
"loss": 2.2106,
|
1542 |
+
"step": 4380
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.5691418408181413,
|
1546 |
+
"grad_norm": 0.7337877154350281,
|
1547 |
+
"learning_rate": 9.756699270996848e-06,
|
1548 |
+
"loss": 2.2257,
|
1549 |
+
"step": 4400
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.5717288491854966,
|
1553 |
+
"grad_norm": 0.7337206602096558,
|
1554 |
+
"learning_rate": 9.752039412935627e-06,
|
1555 |
+
"loss": 2.2066,
|
1556 |
+
"step": 4420
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.5743158575528517,
|
1560 |
+
"grad_norm": 0.8056983947753906,
|
1561 |
+
"learning_rate": 9.74733648705071e-06,
|
1562 |
+
"loss": 2.2049,
|
1563 |
+
"step": 4440
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.576902865920207,
|
1567 |
+
"grad_norm": 0.7203987240791321,
|
1568 |
+
"learning_rate": 9.742590535964805e-06,
|
1569 |
+
"loss": 2.2279,
|
1570 |
+
"step": 4460
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.5794898742875622,
|
1574 |
+
"grad_norm": 0.7495117783546448,
|
1575 |
+
"learning_rate": 9.737801602690554e-06,
|
1576 |
+
"loss": 2.1986,
|
1577 |
+
"step": 4480
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.5820768826549173,
|
1581 |
+
"grad_norm": 0.7343236207962036,
|
1582 |
+
"learning_rate": 9.732969730630153e-06,
|
1583 |
+
"loss": 2.2233,
|
1584 |
+
"step": 4500
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.5846638910222726,
|
1588 |
+
"grad_norm": 0.7727257609367371,
|
1589 |
+
"learning_rate": 9.728094963574948e-06,
|
1590 |
+
"loss": 2.2042,
|
1591 |
+
"step": 4520
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.5872508993896277,
|
1595 |
+
"grad_norm": 0.7064406275749207,
|
1596 |
+
"learning_rate": 9.723177345705048e-06,
|
1597 |
+
"loss": 2.2295,
|
1598 |
+
"step": 4540
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.5898379077569829,
|
1602 |
+
"grad_norm": 0.7306511998176575,
|
1603 |
+
"learning_rate": 9.71821692158892e-06,
|
1604 |
+
"loss": 2.1982,
|
1605 |
+
"step": 4560
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.5924249161243381,
|
1609 |
+
"grad_norm": 0.7717193365097046,
|
1610 |
+
"learning_rate": 9.713213736182976e-06,
|
1611 |
+
"loss": 2.206,
|
1612 |
+
"step": 4580
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.5950119244916933,
|
1616 |
+
"grad_norm": 0.7180883288383484,
|
1617 |
+
"learning_rate": 9.708167834831183e-06,
|
1618 |
+
"loss": 2.2044,
|
1619 |
+
"step": 4600
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.5975989328590484,
|
1623 |
+
"grad_norm": 0.7017503380775452,
|
1624 |
+
"learning_rate": 9.703079263264643e-06,
|
1625 |
+
"loss": 2.192,
|
1626 |
+
"step": 4620
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.6001859412264037,
|
1630 |
+
"grad_norm": 0.7421537637710571,
|
1631 |
+
"learning_rate": 9.697948067601176e-06,
|
1632 |
+
"loss": 2.199,
|
1633 |
+
"step": 4640
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.6027729495937588,
|
1637 |
+
"grad_norm": 0.7729679942131042,
|
1638 |
+
"learning_rate": 9.692774294344905e-06,
|
1639 |
+
"loss": 2.2073,
|
1640 |
+
"step": 4660
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.6053599579611141,
|
1644 |
+
"grad_norm": 0.7517857551574707,
|
1645 |
+
"learning_rate": 9.687557990385836e-06,
|
1646 |
+
"loss": 2.1942,
|
1647 |
+
"step": 4680
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.6079469663284692,
|
1651 |
+
"grad_norm": 0.7258435487747192,
|
1652 |
+
"learning_rate": 9.682299202999433e-06,
|
1653 |
+
"loss": 2.1916,
|
1654 |
+
"step": 4700
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.6105339746958244,
|
1658 |
+
"grad_norm": 0.7256997227668762,
|
1659 |
+
"learning_rate": 9.676997979846183e-06,
|
1660 |
+
"loss": 2.1986,
|
1661 |
+
"step": 4720
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.6131209830631796,
|
1665 |
+
"grad_norm": 0.7594742774963379,
|
1666 |
+
"learning_rate": 9.671654368971176e-06,
|
1667 |
+
"loss": 2.1867,
|
1668 |
+
"step": 4740
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.6157079914305348,
|
1672 |
+
"grad_norm": 0.7546527981758118,
|
1673 |
+
"learning_rate": 9.666268418803655e-06,
|
1674 |
+
"loss": 2.1999,
|
1675 |
+
"step": 4760
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.6182949997978899,
|
1679 |
+
"grad_norm": 0.7679339051246643,
|
1680 |
+
"learning_rate": 9.660840178156592e-06,
|
1681 |
+
"loss": 2.1964,
|
1682 |
+
"step": 4780
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.6208820081652452,
|
1686 |
+
"grad_norm": 0.7719926834106445,
|
1687 |
+
"learning_rate": 9.655369696226235e-06,
|
1688 |
+
"loss": 2.1829,
|
1689 |
+
"step": 4800
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.6234690165326003,
|
1693 |
+
"grad_norm": 0.7456310987472534,
|
1694 |
+
"learning_rate": 9.649857022591664e-06,
|
1695 |
+
"loss": 2.1725,
|
1696 |
+
"step": 4820
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.6260560248999555,
|
1700 |
+
"grad_norm": 0.720140814781189,
|
1701 |
+
"learning_rate": 9.644302207214346e-06,
|
1702 |
+
"loss": 2.1806,
|
1703 |
+
"step": 4840
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.6286430332673107,
|
1707 |
+
"grad_norm": 0.7672199010848999,
|
1708 |
+
"learning_rate": 9.63870530043768e-06,
|
1709 |
+
"loss": 2.1921,
|
1710 |
+
"step": 4860
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.6312300416346659,
|
1714 |
+
"grad_norm": 0.7888000011444092,
|
1715 |
+
"learning_rate": 9.633066352986538e-06,
|
1716 |
+
"loss": 2.198,
|
1717 |
+
"step": 4880
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.6338170500020212,
|
1721 |
+
"grad_norm": 0.7024748921394348,
|
1722 |
+
"learning_rate": 9.627385415966807e-06,
|
1723 |
+
"loss": 2.1579,
|
1724 |
+
"step": 4900
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.6364040583693763,
|
1728 |
+
"grad_norm": 0.7126362919807434,
|
1729 |
+
"learning_rate": 9.62166254086493e-06,
|
1730 |
+
"loss": 2.1882,
|
1731 |
+
"step": 4920
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.6389910667367315,
|
1735 |
+
"grad_norm": 0.6748985052108765,
|
1736 |
+
"learning_rate": 9.61589777954743e-06,
|
1737 |
+
"loss": 2.1931,
|
1738 |
+
"step": 4940
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.6415780751040867,
|
1742 |
+
"grad_norm": 0.7744324207305908,
|
1743 |
+
"learning_rate": 9.61009118426045e-06,
|
1744 |
+
"loss": 2.1823,
|
1745 |
+
"step": 4960
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.6441650834714419,
|
1749 |
+
"grad_norm": 0.6999046802520752,
|
1750 |
+
"learning_rate": 9.604242807629275e-06,
|
1751 |
+
"loss": 2.1598,
|
1752 |
+
"step": 4980
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.646752091838797,
|
1756 |
+
"grad_norm": 0.7126173973083496,
|
1757 |
+
"learning_rate": 9.59835270265785e-06,
|
1758 |
+
"loss": 2.1661,
|
1759 |
+
"step": 5000
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.6493391002061523,
|
1763 |
+
"grad_norm": 0.7425235509872437,
|
1764 |
+
"learning_rate": 9.592420922728312e-06,
|
1765 |
+
"loss": 2.1729,
|
1766 |
+
"step": 5020
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.6519261085735074,
|
1770 |
+
"grad_norm": 0.735068142414093,
|
1771 |
+
"learning_rate": 9.586447521600496e-06,
|
1772 |
+
"loss": 2.1734,
|
1773 |
+
"step": 5040
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.6545131169408626,
|
1777 |
+
"grad_norm": 0.772686779499054,
|
1778 |
+
"learning_rate": 9.580432553411446e-06,
|
1779 |
+
"loss": 2.1943,
|
1780 |
+
"step": 5060
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.6571001253082178,
|
1784 |
+
"grad_norm": 0.8012945652008057,
|
1785 |
+
"learning_rate": 9.574376072674936e-06,
|
1786 |
+
"loss": 2.1678,
|
1787 |
+
"step": 5080
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.659687133675573,
|
1791 |
+
"grad_norm": 0.7072063684463501,
|
1792 |
+
"learning_rate": 9.568278134280966e-06,
|
1793 |
+
"loss": 2.1749,
|
1794 |
+
"step": 5100
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.6622741420429281,
|
1798 |
+
"grad_norm": 0.687140941619873,
|
1799 |
+
"learning_rate": 9.562138793495268e-06,
|
1800 |
+
"loss": 2.1844,
|
1801 |
+
"step": 5120
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.6648611504102834,
|
1805 |
+
"grad_norm": 0.7809275984764099,
|
1806 |
+
"learning_rate": 9.555958105958805e-06,
|
1807 |
+
"loss": 2.1719,
|
1808 |
+
"step": 5140
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.6674481587776385,
|
1812 |
+
"grad_norm": 0.7361642122268677,
|
1813 |
+
"learning_rate": 9.549736127687265e-06,
|
1814 |
+
"loss": 2.1706,
|
1815 |
+
"step": 5160
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.6700351671449938,
|
1819 |
+
"grad_norm": 0.7150685787200928,
|
1820 |
+
"learning_rate": 9.543472915070555e-06,
|
1821 |
+
"loss": 2.1648,
|
1822 |
+
"step": 5180
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.6726221755123489,
|
1826 |
+
"grad_norm": 0.7491324543952942,
|
1827 |
+
"learning_rate": 9.537168524872292e-06,
|
1828 |
+
"loss": 2.156,
|
1829 |
+
"step": 5200
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.6752091838797041,
|
1833 |
+
"grad_norm": 0.7028157711029053,
|
1834 |
+
"learning_rate": 9.530823014229283e-06,
|
1835 |
+
"loss": 2.1588,
|
1836 |
+
"step": 5220
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.6777961922470593,
|
1840 |
+
"grad_norm": 0.7949670553207397,
|
1841 |
+
"learning_rate": 9.52443644065101e-06,
|
1842 |
+
"loss": 2.1788,
|
1843 |
+
"step": 5240
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.6803832006144145,
|
1847 |
+
"grad_norm": 0.7003277540206909,
|
1848 |
+
"learning_rate": 9.518008862019116e-06,
|
1849 |
+
"loss": 2.1917,
|
1850 |
+
"step": 5260
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.6829702089817696,
|
1854 |
+
"grad_norm": 0.7252909541130066,
|
1855 |
+
"learning_rate": 9.511540336586864e-06,
|
1856 |
+
"loss": 2.1709,
|
1857 |
+
"step": 5280
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.6855572173491249,
|
1861 |
+
"grad_norm": 0.7193975448608398,
|
1862 |
+
"learning_rate": 9.505030922978626e-06,
|
1863 |
+
"loss": 2.185,
|
1864 |
+
"step": 5300
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.68814422571648,
|
1868 |
+
"grad_norm": 0.7502670288085938,
|
1869 |
+
"learning_rate": 9.49848068018934e-06,
|
1870 |
+
"loss": 2.1787,
|
1871 |
+
"step": 5320
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.6907312340838352,
|
1875 |
+
"grad_norm": 0.7460989952087402,
|
1876 |
+
"learning_rate": 9.49188966758398e-06,
|
1877 |
+
"loss": 2.1557,
|
1878 |
+
"step": 5340
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.6933182424511904,
|
1882 |
+
"grad_norm": 0.710442066192627,
|
1883 |
+
"learning_rate": 9.485257944897021e-06,
|
1884 |
+
"loss": 2.1547,
|
1885 |
+
"step": 5360
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.6959052508185456,
|
1889 |
+
"grad_norm": 0.7363094091415405,
|
1890 |
+
"learning_rate": 9.478585572231891e-06,
|
1891 |
+
"loss": 2.1473,
|
1892 |
+
"step": 5380
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.6984922591859009,
|
1896 |
+
"grad_norm": 0.7203119397163391,
|
1897 |
+
"learning_rate": 9.47187261006043e-06,
|
1898 |
+
"loss": 2.1743,
|
1899 |
+
"step": 5400
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.701079267553256,
|
1903 |
+
"grad_norm": 0.715248167514801,
|
1904 |
+
"learning_rate": 9.465119119222346e-06,
|
1905 |
+
"loss": 2.1626,
|
1906 |
+
"step": 5420
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.7036662759206112,
|
1910 |
+
"grad_norm": 0.7098533511161804,
|
1911 |
+
"learning_rate": 9.458325160924648e-06,
|
1912 |
+
"loss": 2.1807,
|
1913 |
+
"step": 5440
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.7062532842879664,
|
1917 |
+
"grad_norm": 0.7714352607727051,
|
1918 |
+
"learning_rate": 9.451490796741117e-06,
|
1919 |
+
"loss": 2.1517,
|
1920 |
+
"step": 5460
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.7088402926553216,
|
1924 |
+
"grad_norm": 0.720448911190033,
|
1925 |
+
"learning_rate": 9.444616088611718e-06,
|
1926 |
+
"loss": 2.1775,
|
1927 |
+
"step": 5480
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.7114273010226767,
|
1931 |
+
"grad_norm": 0.7580015659332275,
|
1932 |
+
"learning_rate": 9.437701098842067e-06,
|
1933 |
+
"loss": 2.1529,
|
1934 |
+
"step": 5500
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.714014309390032,
|
1938 |
+
"grad_norm": 0.727325439453125,
|
1939 |
+
"learning_rate": 9.430745890102849e-06,
|
1940 |
+
"loss": 2.1654,
|
1941 |
+
"step": 5520
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.7166013177573871,
|
1945 |
+
"grad_norm": 0.7433022260665894,
|
1946 |
+
"learning_rate": 9.423750525429248e-06,
|
1947 |
+
"loss": 2.1565,
|
1948 |
+
"step": 5540
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.7191883261247423,
|
1952 |
+
"grad_norm": 0.728881299495697,
|
1953 |
+
"learning_rate": 9.416715068220393e-06,
|
1954 |
+
"loss": 2.1734,
|
1955 |
+
"step": 5560
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.7217753344920975,
|
1959 |
+
"grad_norm": 0.7467840909957886,
|
1960 |
+
"learning_rate": 9.409639582238761e-06,
|
1961 |
+
"loss": 2.1502,
|
1962 |
+
"step": 5580
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.7243623428594527,
|
1966 |
+
"grad_norm": 0.7820594310760498,
|
1967 |
+
"learning_rate": 9.40252413160962e-06,
|
1968 |
+
"loss": 2.1725,
|
1969 |
+
"step": 5600
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.7269493512268079,
|
1973 |
+
"grad_norm": 0.7077836394309998,
|
1974 |
+
"learning_rate": 9.395368780820433e-06,
|
1975 |
+
"loss": 2.1508,
|
1976 |
+
"step": 5620
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.7295363595941631,
|
1980 |
+
"grad_norm": 0.7221850752830505,
|
1981 |
+
"learning_rate": 9.388173594720283e-06,
|
1982 |
+
"loss": 2.1649,
|
1983 |
+
"step": 5640
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.7321233679615182,
|
1987 |
+
"grad_norm": 0.7874971628189087,
|
1988 |
+
"learning_rate": 9.380938638519274e-06,
|
1989 |
+
"loss": 2.158,
|
1990 |
+
"step": 5660
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.7347103763288735,
|
1994 |
+
"grad_norm": 0.7347155213356018,
|
1995 |
+
"learning_rate": 9.373663977787956e-06,
|
1996 |
+
"loss": 2.1486,
|
1997 |
+
"step": 5680
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.7372973846962286,
|
2001 |
+
"grad_norm": 0.7876786589622498,
|
2002 |
+
"learning_rate": 9.366349678456717e-06,
|
2003 |
+
"loss": 2.1501,
|
2004 |
+
"step": 5700
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.7398843930635838,
|
2008 |
+
"grad_norm": 0.678352952003479,
|
2009 |
+
"learning_rate": 9.35899580681519e-06,
|
2010 |
+
"loss": 2.1644,
|
2011 |
+
"step": 5720
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.742471401430939,
|
2015 |
+
"grad_norm": 0.7279735803604126,
|
2016 |
+
"learning_rate": 9.351602429511655e-06,
|
2017 |
+
"loss": 2.1508,
|
2018 |
+
"step": 5740
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.7450584097982942,
|
2022 |
+
"grad_norm": 0.7041738629341125,
|
2023 |
+
"learning_rate": 9.344169613552428e-06,
|
2024 |
+
"loss": 2.1617,
|
2025 |
+
"step": 5760
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.7476454181656493,
|
2029 |
+
"grad_norm": 0.750642716884613,
|
2030 |
+
"learning_rate": 9.336697426301267e-06,
|
2031 |
+
"loss": 2.1409,
|
2032 |
+
"step": 5780
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.7502324265330046,
|
2036 |
+
"grad_norm": 0.7688580751419067,
|
2037 |
+
"learning_rate": 9.329185935478741e-06,
|
2038 |
+
"loss": 2.1459,
|
2039 |
+
"step": 5800
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.7528194349003597,
|
2043 |
+
"grad_norm": 0.704578697681427,
|
2044 |
+
"learning_rate": 9.321635209161642e-06,
|
2045 |
+
"loss": 2.1417,
|
2046 |
+
"step": 5820
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.7554064432677149,
|
2050 |
+
"grad_norm": 0.733323872089386,
|
2051 |
+
"learning_rate": 9.314045315782339e-06,
|
2052 |
+
"loss": 2.1516,
|
2053 |
+
"step": 5840
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.7579934516350701,
|
2057 |
+
"grad_norm": 0.771930992603302,
|
2058 |
+
"learning_rate": 9.306416324128184e-06,
|
2059 |
+
"loss": 2.1256,
|
2060 |
+
"step": 5860
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.7605804600024253,
|
2064 |
+
"grad_norm": 0.6910899877548218,
|
2065 |
+
"learning_rate": 9.298748303340871e-06,
|
2066 |
+
"loss": 2.1421,
|
2067 |
+
"step": 5880
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.7631674683697806,
|
2071 |
+
"grad_norm": 0.7119818329811096,
|
2072 |
+
"learning_rate": 9.291041322915824e-06,
|
2073 |
+
"loss": 2.1631,
|
2074 |
+
"step": 5900
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.7657544767371357,
|
2078 |
+
"grad_norm": 0.6817770600318909,
|
2079 |
+
"learning_rate": 9.283295452701549e-06,
|
2080 |
+
"loss": 2.143,
|
2081 |
+
"step": 5920
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.7683414851044909,
|
2085 |
+
"grad_norm": 0.714541494846344,
|
2086 |
+
"learning_rate": 9.275510762899016e-06,
|
2087 |
+
"loss": 2.1546,
|
2088 |
+
"step": 5940
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.7709284934718461,
|
2092 |
+
"grad_norm": 0.6969371438026428,
|
2093 |
+
"learning_rate": 9.267687324061016e-06,
|
2094 |
+
"loss": 2.1186,
|
2095 |
+
"step": 5960
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.7735155018392013,
|
2099 |
+
"grad_norm": 0.7325617671012878,
|
2100 |
+
"learning_rate": 9.259825207091526e-06,
|
2101 |
+
"loss": 2.1363,
|
2102 |
+
"step": 5980
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.7761025102065564,
|
2106 |
+
"grad_norm": 0.743165135383606,
|
2107 |
+
"learning_rate": 9.25192448324506e-06,
|
2108 |
+
"loss": 2.1269,
|
2109 |
+
"step": 6000
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.7786895185739117,
|
2113 |
+
"grad_norm": 0.7538695931434631,
|
2114 |
+
"learning_rate": 9.243985224126031e-06,
|
2115 |
+
"loss": 2.1237,
|
2116 |
+
"step": 6020
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.7812765269412668,
|
2120 |
+
"grad_norm": 0.7549970746040344,
|
2121 |
+
"learning_rate": 9.236007501688094e-06,
|
2122 |
+
"loss": 2.1343,
|
2123 |
+
"step": 6040
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.783863535308622,
|
2127 |
+
"grad_norm": 0.732627272605896,
|
2128 |
+
"learning_rate": 9.2279913882335e-06,
|
2129 |
+
"loss": 2.1465,
|
2130 |
+
"step": 6060
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.7864505436759772,
|
2134 |
+
"grad_norm": 0.7083766460418701,
|
2135 |
+
"learning_rate": 9.219936956412436e-06,
|
2136 |
+
"loss": 2.1394,
|
2137 |
+
"step": 6080
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.7890375520433324,
|
2141 |
+
"grad_norm": 0.7239031195640564,
|
2142 |
+
"learning_rate": 9.211844279222376e-06,
|
2143 |
+
"loss": 2.1386,
|
2144 |
+
"step": 6100
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.7916245604106876,
|
2148 |
+
"grad_norm": 0.7016878128051758,
|
2149 |
+
"learning_rate": 9.2037134300074e-06,
|
2150 |
+
"loss": 2.1313,
|
2151 |
+
"step": 6120
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.7942115687780428,
|
2155 |
+
"grad_norm": 0.6846844553947449,
|
2156 |
+
"learning_rate": 9.195544482457555e-06,
|
2157 |
+
"loss": 2.1383,
|
2158 |
+
"step": 6140
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.7967985771453979,
|
2162 |
+
"grad_norm": 0.7442426085472107,
|
2163 |
+
"learning_rate": 9.187337510608168e-06,
|
2164 |
+
"loss": 2.1177,
|
2165 |
+
"step": 6160
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.7993855855127532,
|
2169 |
+
"grad_norm": 0.7443544268608093,
|
2170 |
+
"learning_rate": 9.179092588839178e-06,
|
2171 |
+
"loss": 2.1391,
|
2172 |
+
"step": 6180
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.8019725938801083,
|
2176 |
+
"grad_norm": 0.7053080201148987,
|
2177 |
+
"learning_rate": 9.170809791874468e-06,
|
2178 |
+
"loss": 2.1221,
|
2179 |
+
"step": 6200
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.8045596022474635,
|
2183 |
+
"grad_norm": 0.7665020227432251,
|
2184 |
+
"learning_rate": 9.16248919478119e-06,
|
2185 |
+
"loss": 2.1116,
|
2186 |
+
"step": 6220
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.8071466106148187,
|
2190 |
+
"grad_norm": 0.7906709909439087,
|
2191 |
+
"learning_rate": 9.154130872969067e-06,
|
2192 |
+
"loss": 2.1363,
|
2193 |
+
"step": 6240
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.8097336189821739,
|
2197 |
+
"grad_norm": 0.6853694915771484,
|
2198 |
+
"learning_rate": 9.145734902189733e-06,
|
2199 |
+
"loss": 2.149,
|
2200 |
+
"step": 6260
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.812320627349529,
|
2204 |
+
"grad_norm": 0.7411865592002869,
|
2205 |
+
"learning_rate": 9.137301358536032e-06,
|
2206 |
+
"loss": 2.1355,
|
2207 |
+
"step": 6280
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.8149076357168843,
|
2211 |
+
"grad_norm": 0.8013186454772949,
|
2212 |
+
"learning_rate": 9.128830318441327e-06,
|
2213 |
+
"loss": 2.1175,
|
2214 |
+
"step": 6300
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.8174946440842394,
|
2218 |
+
"grad_norm": 0.7919278144836426,
|
2219 |
+
"learning_rate": 9.120321858678817e-06,
|
2220 |
+
"loss": 2.128,
|
2221 |
+
"step": 6320
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.8200816524515947,
|
2225 |
+
"grad_norm": 0.7355955243110657,
|
2226 |
+
"learning_rate": 9.111776056360838e-06,
|
2227 |
+
"loss": 2.1253,
|
2228 |
+
"step": 6340
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.8226686608189498,
|
2232 |
+
"grad_norm": 0.7750183343887329,
|
2233 |
+
"learning_rate": 9.103192988938155e-06,
|
2234 |
+
"loss": 2.1225,
|
2235 |
+
"step": 6360
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.825255669186305,
|
2239 |
+
"grad_norm": 0.7022154927253723,
|
2240 |
+
"learning_rate": 9.094572734199271e-06,
|
2241 |
+
"loss": 2.1193,
|
2242 |
+
"step": 6380
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 0.8278426775536603,
|
2246 |
+
"grad_norm": 0.7672535181045532,
|
2247 |
+
"learning_rate": 9.085915370269723e-06,
|
2248 |
+
"loss": 2.1188,
|
2249 |
+
"step": 6400
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.8304296859210154,
|
2253 |
+
"grad_norm": 0.7107143998146057,
|
2254 |
+
"learning_rate": 9.077220975611363e-06,
|
2255 |
+
"loss": 2.1278,
|
2256 |
+
"step": 6420
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.8330166942883706,
|
2260 |
+
"grad_norm": 0.7380732297897339,
|
2261 |
+
"learning_rate": 9.068489629021655e-06,
|
2262 |
+
"loss": 2.1374,
|
2263 |
+
"step": 6440
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 0.8356037026557258,
|
2267 |
+
"grad_norm": 0.6959198117256165,
|
2268 |
+
"learning_rate": 9.05972140963296e-06,
|
2269 |
+
"loss": 2.129,
|
2270 |
+
"step": 6460
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.838190711023081,
|
2274 |
+
"grad_norm": 0.742127001285553,
|
2275 |
+
"learning_rate": 9.050916396911818e-06,
|
2276 |
+
"loss": 2.1285,
|
2277 |
+
"step": 6480
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.8407777193904361,
|
2281 |
+
"grad_norm": 0.6720155477523804,
|
2282 |
+
"learning_rate": 9.042074670658223e-06,
|
2283 |
+
"loss": 2.1172,
|
2284 |
+
"step": 6500
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 0.8433647277577914,
|
2288 |
+
"grad_norm": 0.7020736932754517,
|
2289 |
+
"learning_rate": 9.033196311004915e-06,
|
2290 |
+
"loss": 2.1036,
|
2291 |
+
"step": 6520
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.8459517361251465,
|
2295 |
+
"grad_norm": 0.746281087398529,
|
2296 |
+
"learning_rate": 9.024281398416632e-06,
|
2297 |
+
"loss": 2.1183,
|
2298 |
+
"step": 6540
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.8485387444925018,
|
2302 |
+
"grad_norm": 0.7673128843307495,
|
2303 |
+
"learning_rate": 9.015330013689396e-06,
|
2304 |
+
"loss": 2.1435,
|
2305 |
+
"step": 6560
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 0.8511257528598569,
|
2309 |
+
"grad_norm": 0.7635971903800964,
|
2310 |
+
"learning_rate": 9.006342237949782e-06,
|
2311 |
+
"loss": 2.1018,
|
2312 |
+
"step": 6580
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.8537127612272121,
|
2316 |
+
"grad_norm": 0.7365761995315552,
|
2317 |
+
"learning_rate": 8.997318152654167e-06,
|
2318 |
+
"loss": 2.116,
|
2319 |
+
"step": 6600
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.8562997695945673,
|
2323 |
+
"grad_norm": 0.7582866549491882,
|
2324 |
+
"learning_rate": 8.988257839588011e-06,
|
2325 |
+
"loss": 2.1146,
|
2326 |
+
"step": 6620
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 0.8588867779619225,
|
2330 |
+
"grad_norm": 0.7569854259490967,
|
2331 |
+
"learning_rate": 8.979161380865104e-06,
|
2332 |
+
"loss": 2.1156,
|
2333 |
+
"step": 6640
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 0.8614737863292776,
|
2337 |
+
"grad_norm": 0.6821621656417847,
|
2338 |
+
"learning_rate": 8.970028858926825e-06,
|
2339 |
+
"loss": 2.1134,
|
2340 |
+
"step": 6660
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 0.8640607946966329,
|
2344 |
+
"grad_norm": 0.7307649850845337,
|
2345 |
+
"learning_rate": 8.96086035654139e-06,
|
2346 |
+
"loss": 2.124,
|
2347 |
+
"step": 6680
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 0.866647803063988,
|
2351 |
+
"grad_norm": 0.7775338292121887,
|
2352 |
+
"learning_rate": 8.951655956803118e-06,
|
2353 |
+
"loss": 2.1052,
|
2354 |
+
"step": 6700
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.8692348114313432,
|
2358 |
+
"grad_norm": 0.7425001859664917,
|
2359 |
+
"learning_rate": 8.942415743131651e-06,
|
2360 |
+
"loss": 2.106,
|
2361 |
+
"step": 6720
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.8718218197986984,
|
2365 |
+
"grad_norm": 0.7379507422447205,
|
2366 |
+
"learning_rate": 8.933139799271229e-06,
|
2367 |
+
"loss": 2.0974,
|
2368 |
+
"step": 6740
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 0.8744088281660536,
|
2372 |
+
"grad_norm": 0.7932276129722595,
|
2373 |
+
"learning_rate": 8.923828209289904e-06,
|
2374 |
+
"loss": 2.1257,
|
2375 |
+
"step": 6760
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 0.8769958365334087,
|
2379 |
+
"grad_norm": 0.7237013578414917,
|
2380 |
+
"learning_rate": 8.914481057578791e-06,
|
2381 |
+
"loss": 2.1033,
|
2382 |
+
"step": 6780
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 0.879582844900764,
|
2386 |
+
"grad_norm": 0.7310687899589539,
|
2387 |
+
"learning_rate": 8.905098428851309e-06,
|
2388 |
+
"loss": 2.1194,
|
2389 |
+
"step": 6800
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 0.8821698532681191,
|
2393 |
+
"grad_norm": 0.6933685541152954,
|
2394 |
+
"learning_rate": 8.8956804081424e-06,
|
2395 |
+
"loss": 2.0891,
|
2396 |
+
"step": 6820
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.8847568616354744,
|
2400 |
+
"grad_norm": 0.7352440357208252,
|
2401 |
+
"learning_rate": 8.886227080807762e-06,
|
2402 |
+
"loss": 2.1022,
|
2403 |
+
"step": 6840
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.8873438700028295,
|
2407 |
+
"grad_norm": 0.7073638439178467,
|
2408 |
+
"learning_rate": 8.876738532523081e-06,
|
2409 |
+
"loss": 2.1065,
|
2410 |
+
"step": 6860
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 0.8899308783701847,
|
2414 |
+
"grad_norm": 0.7440693974494934,
|
2415 |
+
"learning_rate": 8.867214849283252e-06,
|
2416 |
+
"loss": 2.1079,
|
2417 |
+
"step": 6880
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 0.89251788673754,
|
2421 |
+
"grad_norm": 0.7651025056838989,
|
2422 |
+
"learning_rate": 8.8576561174016e-06,
|
2423 |
+
"loss": 2.121,
|
2424 |
+
"step": 6900
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 0.8951048951048951,
|
2428 |
+
"grad_norm": 0.7150782346725464,
|
2429 |
+
"learning_rate": 8.84806242350909e-06,
|
2430 |
+
"loss": 2.1025,
|
2431 |
+
"step": 6920
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 0.8976919034722503,
|
2435 |
+
"grad_norm": 0.7346411943435669,
|
2436 |
+
"learning_rate": 8.838433854553555e-06,
|
2437 |
+
"loss": 2.0959,
|
2438 |
+
"step": 6940
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.9002789118396055,
|
2442 |
+
"grad_norm": 0.7531387209892273,
|
2443 |
+
"learning_rate": 8.828770497798897e-06,
|
2444 |
+
"loss": 2.0901,
|
2445 |
+
"step": 6960
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.9028659202069607,
|
2449 |
+
"grad_norm": 0.7870126366615295,
|
2450 |
+
"learning_rate": 8.819072440824303e-06,
|
2451 |
+
"loss": 2.1034,
|
2452 |
+
"step": 6980
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 0.9054529285743158,
|
2456 |
+
"grad_norm": 0.7796097993850708,
|
2457 |
+
"learning_rate": 8.80933977152345e-06,
|
2458 |
+
"loss": 2.0825,
|
2459 |
+
"step": 7000
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 0.9080399369416711,
|
2463 |
+
"grad_norm": 0.7178963422775269,
|
2464 |
+
"learning_rate": 8.799572578103703e-06,
|
2465 |
+
"loss": 2.1252,
|
2466 |
+
"step": 7020
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 0.9106269453090262,
|
2470 |
+
"grad_norm": 0.7850649952888489,
|
2471 |
+
"learning_rate": 8.789770949085321e-06,
|
2472 |
+
"loss": 2.0886,
|
2473 |
+
"step": 7040
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 0.9132139536763815,
|
2477 |
+
"grad_norm": 0.7312331795692444,
|
2478 |
+
"learning_rate": 8.779934973300657e-06,
|
2479 |
+
"loss": 2.1015,
|
2480 |
+
"step": 7060
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.9158009620437366,
|
2484 |
+
"grad_norm": 0.7429481148719788,
|
2485 |
+
"learning_rate": 8.770064739893346e-06,
|
2486 |
+
"loss": 2.0791,
|
2487 |
+
"step": 7080
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.9183879704110918,
|
2491 |
+
"grad_norm": 0.70722895860672,
|
2492 |
+
"learning_rate": 8.7601603383175e-06,
|
2493 |
+
"loss": 2.0992,
|
2494 |
+
"step": 7100
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 0.920974978778447,
|
2498 |
+
"grad_norm": 0.7041098475456238,
|
2499 |
+
"learning_rate": 8.750221858336902e-06,
|
2500 |
+
"loss": 2.1027,
|
2501 |
+
"step": 7120
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 0.9235619871458022,
|
2505 |
+
"grad_norm": 0.7348500490188599,
|
2506 |
+
"learning_rate": 8.740249390024183e-06,
|
2507 |
+
"loss": 2.0899,
|
2508 |
+
"step": 7140
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 0.9261489955131573,
|
2512 |
+
"grad_norm": 0.7186647653579712,
|
2513 |
+
"learning_rate": 8.730243023760012e-06,
|
2514 |
+
"loss": 2.1059,
|
2515 |
+
"step": 7160
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.9287360038805126,
|
2519 |
+
"grad_norm": 0.7586842775344849,
|
2520 |
+
"learning_rate": 8.720202850232281e-06,
|
2521 |
+
"loss": 2.0929,
|
2522 |
+
"step": 7180
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.9313230122478677,
|
2526 |
+
"grad_norm": 0.7751206159591675,
|
2527 |
+
"learning_rate": 8.710128960435271e-06,
|
2528 |
+
"loss": 2.0961,
|
2529 |
+
"step": 7200
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.9339100206152229,
|
2533 |
+
"grad_norm": 0.7438105344772339,
|
2534 |
+
"learning_rate": 8.700021445668839e-06,
|
2535 |
+
"loss": 2.1013,
|
2536 |
+
"step": 7220
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.9364970289825781,
|
2540 |
+
"grad_norm": 0.7343020439147949,
|
2541 |
+
"learning_rate": 8.68988039753758e-06,
|
2542 |
+
"loss": 2.0904,
|
2543 |
+
"step": 7240
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.9390840373499333,
|
2547 |
+
"grad_norm": 0.7382264733314514,
|
2548 |
+
"learning_rate": 8.67970590795001e-06,
|
2549 |
+
"loss": 2.1016,
|
2550 |
+
"step": 7260
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.9416710457172885,
|
2554 |
+
"grad_norm": 0.720942497253418,
|
2555 |
+
"learning_rate": 8.669498069117721e-06,
|
2556 |
+
"loss": 2.1167,
|
2557 |
+
"step": 7280
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.9442580540846437,
|
2561 |
+
"grad_norm": 0.7112380266189575,
|
2562 |
+
"learning_rate": 8.65925697355455e-06,
|
2563 |
+
"loss": 2.0981,
|
2564 |
+
"step": 7300
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.9468450624519988,
|
2568 |
+
"grad_norm": 0.7193992137908936,
|
2569 |
+
"learning_rate": 8.648982714075743e-06,
|
2570 |
+
"loss": 2.0853,
|
2571 |
+
"step": 7320
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.9494320708193541,
|
2575 |
+
"grad_norm": 0.7250093221664429,
|
2576 |
+
"learning_rate": 8.638675383797106e-06,
|
2577 |
+
"loss": 2.0936,
|
2578 |
+
"step": 7340
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.9520190791867092,
|
2582 |
+
"grad_norm": 0.727990448474884,
|
2583 |
+
"learning_rate": 8.628335076134173e-06,
|
2584 |
+
"loss": 2.0882,
|
2585 |
+
"step": 7360
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.9546060875540644,
|
2589 |
+
"grad_norm": 0.7733245491981506,
|
2590 |
+
"learning_rate": 8.617961884801346e-06,
|
2591 |
+
"loss": 2.0799,
|
2592 |
+
"step": 7380
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.9571930959214197,
|
2596 |
+
"grad_norm": 0.7614827752113342,
|
2597 |
+
"learning_rate": 8.60755590381106e-06,
|
2598 |
+
"loss": 2.0935,
|
2599 |
+
"step": 7400
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.9597801042887748,
|
2603 |
+
"grad_norm": 0.7480348348617554,
|
2604 |
+
"learning_rate": 8.597117227472915e-06,
|
2605 |
+
"loss": 2.0889,
|
2606 |
+
"step": 7420
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.96236711265613,
|
2610 |
+
"grad_norm": 0.7127954959869385,
|
2611 |
+
"learning_rate": 8.586645950392835e-06,
|
2612 |
+
"loss": 2.0981,
|
2613 |
+
"step": 7440
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.9649541210234852,
|
2617 |
+
"grad_norm": 0.6996986865997314,
|
2618 |
+
"learning_rate": 8.576142167472204e-06,
|
2619 |
+
"loss": 2.0856,
|
2620 |
+
"step": 7460
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.9675411293908404,
|
2624 |
+
"grad_norm": 0.757079005241394,
|
2625 |
+
"learning_rate": 8.565605973907006e-06,
|
2626 |
+
"loss": 2.0873,
|
2627 |
+
"step": 7480
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.9701281377581955,
|
2631 |
+
"grad_norm": 0.7550200819969177,
|
2632 |
+
"learning_rate": 8.555037465186962e-06,
|
2633 |
+
"loss": 2.0817,
|
2634 |
+
"step": 7500
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.9727151461255508,
|
2638 |
+
"grad_norm": 0.7152219414710999,
|
2639 |
+
"learning_rate": 8.544436737094672e-06,
|
2640 |
+
"loss": 2.0962,
|
2641 |
+
"step": 7520
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.9753021544929059,
|
2645 |
+
"grad_norm": 0.774013876914978,
|
2646 |
+
"learning_rate": 8.533803885704732e-06,
|
2647 |
+
"loss": 2.0944,
|
2648 |
+
"step": 7540
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.9778891628602612,
|
2652 |
+
"grad_norm": 0.721843421459198,
|
2653 |
+
"learning_rate": 8.523139007382881e-06,
|
2654 |
+
"loss": 2.0849,
|
2655 |
+
"step": 7560
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.9804761712276163,
|
2659 |
+
"grad_norm": 0.7735098600387573,
|
2660 |
+
"learning_rate": 8.51244219878511e-06,
|
2661 |
+
"loss": 2.0906,
|
2662 |
+
"step": 7580
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.9830631795949715,
|
2666 |
+
"grad_norm": 0.7077389359474182,
|
2667 |
+
"learning_rate": 8.501713556856803e-06,
|
2668 |
+
"loss": 2.0665,
|
2669 |
+
"step": 7600
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.9856501879623267,
|
2673 |
+
"grad_norm": 0.7230038046836853,
|
2674 |
+
"learning_rate": 8.490953178831846e-06,
|
2675 |
+
"loss": 2.0766,
|
2676 |
+
"step": 7620
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.9882371963296819,
|
2680 |
+
"grad_norm": 0.7460753321647644,
|
2681 |
+
"learning_rate": 8.480161162231747e-06,
|
2682 |
+
"loss": 2.0556,
|
2683 |
+
"step": 7640
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.990824204697037,
|
2687 |
+
"grad_norm": 0.7653132081031799,
|
2688 |
+
"learning_rate": 8.469337604864759e-06,
|
2689 |
+
"loss": 2.0821,
|
2690 |
+
"step": 7660
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.9934112130643923,
|
2694 |
+
"grad_norm": 0.7243251204490662,
|
2695 |
+
"learning_rate": 8.458482604824988e-06,
|
2696 |
+
"loss": 2.0926,
|
2697 |
+
"step": 7680
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.9959982214317474,
|
2701 |
+
"grad_norm": 0.7776849865913391,
|
2702 |
+
"learning_rate": 8.447596260491508e-06,
|
2703 |
+
"loss": 2.0925,
|
2704 |
+
"step": 7700
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.9985852297991026,
|
2708 |
+
"grad_norm": 0.7500579953193665,
|
2709 |
+
"learning_rate": 8.436678670527463e-06,
|
2710 |
+
"loss": 2.0736,
|
2711 |
+
"step": 7720
|
2712 |
+
}
|
2713 |
+
],
|
2714 |
+
"logging_steps": 20,
|
2715 |
+
"max_steps": 23190,
|
2716 |
+
"num_input_tokens_seen": 0,
|
2717 |
+
"num_train_epochs": 3,
|
2718 |
+
"save_steps": 500,
|
2719 |
+
"stateful_callbacks": {
|
2720 |
+
"TrainerControl": {
|
2721 |
+
"args": {
|
2722 |
+
"should_epoch_stop": false,
|
2723 |
+
"should_evaluate": false,
|
2724 |
+
"should_log": false,
|
2725 |
+
"should_save": true,
|
2726 |
+
"should_training_stop": false
|
2727 |
+
},
|
2728 |
+
"attributes": {}
|
2729 |
+
}
|
2730 |
+
},
|
2731 |
+
"total_flos": 3.963409237367639e+19,
|
2732 |
+
"train_batch_size": 12,
|
2733 |
+
"trial_name": null,
|
2734 |
+
"trial_params": null
|
2735 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26ba0ad3aaaa7cbff9bc1003d64820cbd0ec396b0565bcc66973c21f42aab888
|
3 |
+
size 6712
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|