AbLang_heavy / AbLang_roberta_model.py
qilowoq's picture
Upload model
9c798de
from transformers.models.roberta.modeling_roberta import RobertaEmbeddings, RobertaModel, RobertaForMaskedLM
from typing import Optional
import torch
class RobertaEmbeddingsV2(RobertaEmbeddings):
def __init__(self, config):
super().__init__(config)
self.pad_token_id = config.pad_token_id
self.position_embeddings = torch.nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0) # here padding_idx is always 0
def forward(
self,
input_ids: torch.LongTensor,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
inputs_embeds = self.word_embeddings(input_ids)
position_ids = self.create_position_ids_from_input_ids(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = inputs_embeds + position_embeddings
return self.dropout(self.LayerNorm(embeddings))
def create_position_ids_from_input_ids(self, input_ids: torch.LongTensor) -> torch.Tensor:
mask = input_ids.ne(self.pad_token_id).int()
return torch.cumsum(mask, dim=1).long() * mask
class RobertaModelV2(RobertaModel):
def __init__(self, config, add_pooling_layer=False):
super().__init__(config, add_pooling_layer=add_pooling_layer)
self.embeddings = RobertaEmbeddingsV2(config)
class RobertaForMaskedLMV2(RobertaForMaskedLM):
def __init__(self, config):
super().__init__(config)
self.roberta = RobertaModelV2(config, add_pooling_layer=False)