File size: 20,789 Bytes
61c9b91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/c51/#c51_ataripy
import argparse
import math
import os
import random
import time
from collections import deque
from distutils.util import strtobool
from types import SimpleNamespace

import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.optim as optim
from stable_baselines3.common.atari_wrappers import ClipRewardEnv, EpisodicLifeEnv, FireResetEnv, MaxAndSkipEnv, NoopResetEnv
from torch.utils.tensorboard import SummaryWriter


def parse_args():
    # fmt: off
    parser = argparse.ArgumentParser()
    parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
        help="the name of this experiment")
    parser.add_argument("--seed", type=int, default=1,
        help="seed of the experiment")
    parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
        help="if toggled, `torch.backends.cudnn.deterministic=False`")
    parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
        help="if toggled, cuda will be enabled by default")
    parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
        help="if toggled, this experiment will be tracked with Weights and Biases")
    parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
        help="the wandb's project name")
    parser.add_argument("--wandb-entity", type=str, default=None,
        help="the entity (team) of wandb's project")
    parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
        help="whether to capture videos of the agent performances (check out `videos` folder)")
    parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
        help="whether to save model into the `runs/{run_name}` folder")
    parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
        help="whether to upload the saved model to huggingface")
    parser.add_argument("--hf-entity", type=str, default="",
        help="the user or org name of the model repository from the Hugging Face Hub")

    # Algorithm specific arguments
    parser.add_argument("--env-id", type=str, default="BreakoutNoFrameskip-v4",
        help="the id of the environment")
    parser.add_argument("--total-timesteps", type=int, default=10000000,
        help="total timesteps of the experiments")
    parser.add_argument("--learning-rate", type=float, default=2.5e-4,
        help="the learning rate of the optimizer")
    parser.add_argument("--num-envs", type=int, default=1,
        help="the number of parallel game environments")
    parser.add_argument("--n-atoms", type=int, default=51,
        help="the number of atoms")
    parser.add_argument("--v-min", type=float, default=-10,
        help="the return lower bound")
    parser.add_argument("--v-max", type=float, default=10,
        help="the return upper bound")
    parser.add_argument("--buffer-size", type=int, default=1000000,
        help="the replay memory buffer size")
    parser.add_argument("--gamma", type=float, default=0.99,
        help="the discount factor gamma")
    parser.add_argument("--target-network-frequency", type=int, default=10000,
        help="the timesteps it takes to update the target network")
    parser.add_argument("--batch-size", type=int, default=32,
        help="the batch size of sample from the reply memory")
    parser.add_argument("--learning-starts", type=int, default=80000,
        help="timestep to start learning")
    parser.add_argument("--train-frequency", type=int, default=4,
        help="the frequency of training")
    args = parser.parse_args()
    # fmt: on
    assert args.num_envs == 1, "vectorized envs are not supported at the moment"

    return args


def make_env(env_id, seed, idx, capture_video, run_name):
    def thunk():
        if capture_video and idx == 0:
            env = gym.make(env_id, render_mode="rgb_array")
            env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
        else:
            env = gym.make(env_id)
        env = gym.wrappers.RecordEpisodeStatistics(env)

        env = NoopResetEnv(env, noop_max=30)
        env = MaxAndSkipEnv(env, skip=4)
        env = EpisodicLifeEnv(env)
        if "FIRE" in env.unwrapped.get_action_meanings():
            env = FireResetEnv(env)
        env = ClipRewardEnv(env)
        env = gym.wrappers.ResizeObservation(env, (84, 84))
        env = gym.wrappers.GrayScaleObservation(env)
        env = gym.wrappers.FrameStack(env, 4)

        env.action_space.seed(seed)
        return env

    return thunk


class SumTree:
    def __init__(self, capacity):
        self.capacity = capacity  # Capacity of the sum tree (number of leaves)
        self.tree = [0] * (2 * capacity)  # Binary tree representation
        self.max_priority = 1.0  # Initial max priority for new experiences

    def update(self, index, priority=None):
        if priority is None:
            priority = self.max_priority
        tree_idx = index + self.capacity
        change = priority - self.tree[tree_idx]
        self.tree[tree_idx] = priority
        self._propagate(tree_idx, change)
        self.max_priority = max(self.max_priority, priority)

    def _propagate(self, idx, change):
        parent = idx // 2
        while parent != 0:
            self.tree[parent] += change
            parent = parent // 2

    def total(self):
        return self.tree[1]  # The root of the tree holds the total sum

    def get(self, s):
        idx = 1
        while idx < self.capacity:  # Keep moving down the tree to find the index
            left = 2 * idx
            right = left + 1
            if self.tree[left] >= s:
                idx = left
            else:
                s -= self.tree[left]
                idx = right
        return idx - self.capacity


class PrioritizedReplayBuffer:
    def __init__(self, size, device, alpha=0.5, beta_0=0.4, n_step=3, gamma=0.99):
        self.size = size
        self.device = device
        self.alpha = alpha
        self.beta_0 = beta_0
        self.update_beta(0.0)
        self.n_step = n_step
        self.gamma = gamma

        self.next_index = 0
        self.sum_tree = SumTree(size)
        self.observations = np.zeros((self.size, 4, 84, 84), dtype=np.uint8)
        self.next_observations = np.zeros((self.size, 4, 84, 84), dtype=np.uint8)
        self.actions = np.zeros((self.size, 1), dtype=np.int64)
        self.rewards = np.zeros((self.size, 1), dtype=np.float32)
        self.dones = np.zeros((self.size, 1), dtype=bool)

        self.n_step_buffer = deque(maxlen=n_step)

    def add(self, obs, next_obs, actions, rewards, dones, infos):
        self.n_step_buffer.append((obs[0], next_obs[0], actions[0], rewards[0], dones[0], infos))

        if len(self.n_step_buffer) < self.n_step and not dones[0]:
            return

        # Compute n-step return and the first state and action
        rewards = [self.n_step_buffer[i][3] for i in range(len(self.n_step_buffer))]
        n_step_return = sum([r * (self.gamma**i) for i, r in enumerate(rewards)])
        obs, _, action, _, _, _ = self.n_step_buffer[0]
        _, next_obs, _, _, done, _ = self.n_step_buffer[-1]

        # Store the n-step transition
        self.observations[self.next_index] = obs
        self.next_observations[self.next_index] = next_obs
        self.actions[self.next_index] = action
        self.rewards[self.next_index] = n_step_return
        self.dones[self.next_index] = done

        # Get the max priority in the tree and set the new transition with max priority
        self.sum_tree.update(self.next_index)
        self.next_index = (self.next_index + 1) % self.size

        if dones[0]:
            self.n_step_buffer.clear()

    def sample(self, batch_size):
        segment = self.sum_tree.total() / batch_size
        idxs = []
        priorities = []
        for i in range(batch_size):
            a = segment * i
            b = segment * (i + 1)
            s = random.uniform(a, b)
            idx = self.sum_tree.get(s)
            idxs.append(idx)
            leaf_idx = idx + self.size  # Adjusting index to point to the leaf node
            priorities.append(self.sum_tree.tree[leaf_idx])

        priorities = torch.tensor(priorities, dtype=torch.float32, device=self.device).unsqueeze(1)
        sampling_probabilities = priorities / self.sum_tree.total()
        weights = (self.size * sampling_probabilities) ** (-self.beta)
        weights /= weights.max()  # Normalize for stability

        data = SimpleNamespace(
            observations=torch.from_numpy(self.observations[idxs]).to(self.device),
            next_observations=torch.from_numpy(self.next_observations[idxs]).to(self.device),
            actions=torch.from_numpy(self.actions[idxs]).to(self.device),
            rewards=torch.from_numpy(self.rewards[idxs]).to(self.device),
            dones=torch.from_numpy(self.dones[idxs]).to(self.device),
        )
        return data, idxs, weights

    def update_priorities(self, idxs, errors):
        for idx, error in zip(idxs, errors):
            priority = (abs(error) + 1e-5) ** self.alpha
            self.sum_tree.update(idx, priority)

    def update_beta(self, fraction):
        self.beta = (1.0 - self.beta_0) * fraction + self.beta_0


class NoisyLinear(nn.Module):
    def __init__(self, in_features, out_features, std_init=0.1):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.std_init = std_init

        self.weight_mu = nn.Parameter(torch.Tensor(out_features, in_features))
        self.weight_sigma = nn.Parameter(torch.Tensor(out_features, in_features))
        self.register_buffer("weight_epsilon", torch.Tensor(out_features, in_features))

        self.bias_mu = nn.Parameter(torch.Tensor(out_features))
        self.bias_sigma = nn.Parameter(torch.Tensor(out_features))
        self.register_buffer("bias_epsilon", torch.Tensor(out_features))

        self.reset_parameters()
        self.reset_noise()

    def reset_parameters(self):
        init.kaiming_uniform_(self.weight_mu, a=math.sqrt(5))
        init.constant_(self.weight_sigma, self.std_init / math.sqrt(self.in_features))
        init.constant_(self.bias_mu, 0)
        init.constant_(self.bias_sigma, self.std_init / math.sqrt(self.out_features))

    def reset_noise(self):
        epsilon_in = self._scale_noise(self.in_features)
        epsilon_out = self._scale_noise(self.out_features)
        self.weight_epsilon.copy_(epsilon_out.outer(epsilon_in))
        self.bias_epsilon.copy_(epsilon_out)

    def _scale_noise(self, size):
        x = torch.randn(size, device=self.weight_mu.device)
        return x.sign().mul_(x.abs().sqrt_())

    def forward(self, input):
        weight = self.weight_mu + self.weight_sigma * self.weight_epsilon if self.training else self.weight_mu
        bias = self.bias_mu + self.bias_sigma * self.bias_epsilon if self.training else self.bias_mu
        return F.linear(input, weight, bias)


# ALGO LOGIC: initialize agent here:
class QNetwork(nn.Module):
    def __init__(self, env, n_atoms=101, v_min=-100, v_max=100):
        super().__init__()
        self.env = env
        self.n_atoms = n_atoms
        self.register_buffer("atoms", torch.linspace(v_min, v_max, steps=n_atoms))
        self.n = env.single_action_space.n

        self.shared_layers = nn.Sequential(
            nn.Conv2d(4, 32, 8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, 4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, stride=1),
            nn.ReLU(),
            nn.Flatten(),
        )
        self.value_stream = nn.Sequential(NoisyLinear(3136, 512), nn.ReLU(), NoisyLinear(512, n_atoms))
        self.advantage_stream = nn.Sequential(NoisyLinear(3136, 512), nn.ReLU(), NoisyLinear(512, self.n * n_atoms))

    def reset_noise(self):
        for module in self.modules():
            if isinstance(module, NoisyLinear):
                module.reset_noise()

    def get_action(self, obs):
        q_values_distributions = self.get_distribution(obs)
        q_values = (torch.softmax(q_values_distributions, dim=2) * self.atoms).sum(2)
        return torch.argmax(q_values, 1)

    def get_distribution(self, obs):
        x = self.shared_layers(obs / 255.0)
        value = self.value_stream(x).view(-1, 1, self.n_atoms)
        advantages = self.advantage_stream(x).view(-1, self.n, self.n_atoms)
        return value + (advantages - advantages.mean(dim=1, keepdim=True))


if __name__ == "__main__":
    import stable_baselines3 as sb3

    if sb3.__version__ < "2.0":
        raise ValueError(
            """Ongoing migration: run the following command to install the new dependencies:

poetry run pip install "stable_baselines3==2.0.0a1" "gymnasium[atari,accept-rom-license]==0.28.1"  "ale-py==0.8.1" 
"""
        )
    args = parse_args()
    run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
    if args.track:
        import wandb

        wandb.init(
            project=args.wandb_project_name,
            entity=args.wandb_entity,
            sync_tensorboard=True,
            config=vars(args),
            name=run_name,
            monitor_gym=True,
            save_code=True,
        )
    writer = SummaryWriter(f"runs/{run_name}")
    writer.add_text(
        "hyperparameters",
        "|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
    )

    # TRY NOT TO MODIFY: seeding
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.backends.cudnn.deterministic = args.torch_deterministic

    device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")

    # env setup
    envs = gym.vector.SyncVectorEnv(
        [make_env(args.env_id, args.seed + i, i, args.capture_video, run_name) for i in range(args.num_envs)]
    )
    assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"

    q_network = QNetwork(envs, n_atoms=args.n_atoms, v_min=args.v_min, v_max=args.v_max).to(device)
    optimizer = optim.Adam(q_network.parameters(), lr=args.learning_rate, eps=0.01 / args.batch_size)
    target_network = QNetwork(envs, n_atoms=args.n_atoms, v_min=args.v_min, v_max=args.v_max).to(device)
    target_network.load_state_dict(q_network.state_dict())

    rb = PrioritizedReplayBuffer(args.buffer_size, device)
    start_time = time.time()

    # TRY NOT TO MODIFY: start the game
    obs, _ = envs.reset(seed=args.seed)
    for global_step in range(args.total_timesteps):
        # ALGO LOGIC: put action logic here
        actions = q_network.get_action(torch.Tensor(obs).to(device))
        actions = actions.cpu().numpy()

        # TRY NOT TO MODIFY: execute the game and log data.
        next_obs, rewards, terminations, truncations, infos = envs.step(actions)

        # TRY NOT TO MODIFY: record rewards for plotting purposes
        if "final_info" in infos:
            for info in infos["final_info"]:
                # Skip the envs that are not done
                if "episode" not in info:
                    continue
                print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
                writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
                writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
                break

        # TRY NOT TO MODIFY: save data to reply buffer; handle `final_observation`
        real_next_obs = next_obs.copy()
        for idx, trunc in enumerate(truncations):
            if trunc:
                real_next_obs[idx] = infos["final_observation"][idx]
        rb.add(obs, real_next_obs, actions, rewards, terminations, infos)

        # TRY NOT TO MODIFY: CRUCIAL step easy to overlook
        obs = next_obs

        # ALGO LOGIC: training.
        if global_step > args.learning_starts:
            if global_step % args.train_frequency == 0:
                data, idxs, weights = rb.sample(args.batch_size)

                # Combine observations for a single network call
                combined_obs = torch.cat([data.observations, data.next_observations], dim=0)
                combined_dist = q_network.get_distribution(combined_obs)
                dist, next_dist = combined_dist.split(len(data.observations), dim=0)

                with torch.no_grad():
                    next_q_values = (torch.softmax(next_dist, dim=2) * q_network.atoms).sum(2)
                    next_actions = torch.argmax(next_q_values, 1)
                    target_next_dist = target_network.get_distribution(data.next_observations)
                    next_pmfs = torch.softmax(target_next_dist[torch.arange(len(data.next_observations)), next_actions], dim=1)
                    next_atoms = data.rewards + args.gamma * target_network.atoms * (1 - data.dones.float())
                    # projection
                    delta_z = target_network.atoms[1] - target_network.atoms[0]
                    tz = next_atoms.clamp(args.v_min, args.v_max)

                    b = (tz - args.v_min) / delta_z
                    l = b.floor().clamp(0, args.n_atoms - 1)
                    u = b.ceil().clamp(0, args.n_atoms - 1)
                    # (l == u).float() handles the case where bj is exactly an integer
                    # example bj = 1, then the upper ceiling should be uj= 2, and lj= 1
                    d_m_l = (u + (l == u).float() - b) * next_pmfs
                    d_m_u = (b - l) * next_pmfs
                    target_pmfs = torch.zeros_like(next_pmfs)
                    for i in range(target_pmfs.size(0)):
                        target_pmfs[i].index_add_(0, l[i].long(), d_m_l[i])
                        target_pmfs[i].index_add_(0, u[i].long(), d_m_u[i])

                old_pmfs = torch.softmax(dist[torch.arange(len(data.observations)), data.actions.flatten()], dim=1)

                expected_old_q = (old_pmfs.detach() * q_network.atoms).sum(-1)
                expected_target_q = (target_pmfs * target_network.atoms).sum(-1)
                td_error = expected_target_q - expected_old_q
                rb.update_priorities(idxs, td_error.abs().cpu().numpy())
                rb.update_beta(global_step / args.total_timesteps)

                loss = (weights * -(target_pmfs * old_pmfs.clamp(min=1e-5, max=1 - 1e-5).log())).sum(-1).mean()

                if global_step % 100 == 0:
                    writer.add_scalar("losses/loss", loss.item(), global_step)
                    writer.add_scalar("losses/q_values", expected_old_q.mean().item(), global_step)
                    print("SPS:", int(global_step / (time.time() - start_time)))
                    writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)

                # optimize the model
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                q_network.reset_noise()

            # update target network
            if global_step % args.target_network_frequency == 0:
                target_network.load_state_dict(q_network.state_dict())

    if args.save_model:
        model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
        model_data = {
            "model_weights": q_network.state_dict(),
            "args": vars(args),
        }
        torch.save(model_data, model_path)
        print(f"model saved to {model_path}")
        from cleanrl_utils.evals.rainbow_eval import evaluate

        episodic_returns = evaluate(
            model_path,
            make_env,
            args.env_id,
            eval_episodes=10,
            run_name=f"{run_name}-eval",
            Model=QNetwork,
            device=device,
        )
        for idx, episodic_return in enumerate(episodic_returns):
            writer.add_scalar("eval/episodic_return", episodic_return, idx)

        if args.upload_model:
            from cleanrl_utils.huggingface import push_to_hub

            repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
            repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
            push_to_hub(args, episodic_returns, repo_id, "RAINBOW", f"runs/{run_name}", f"videos/{run_name}-eval")

    envs.close()
    writer.close()