--- license: llama3.1 base_model: meta-llama/Llama-3.1-8B-Instruct tags: - trl - sft - generated_from_trainer model-index: - name: Llama-3.1-8B-Instruct-EI1-2ep-sft results: [] --- # Llama-3.1-8B-Instruct-EI1-2ep-sft This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Llama-3.1-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3970 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0562 | 100 | 0.5980 | | No log | 0.1124 | 200 | 0.5609 | | No log | 0.1685 | 300 | 0.5369 | | No log | 0.2247 | 400 | 0.5156 | | 0.5582 | 0.2809 | 500 | 0.4955 | | 0.5582 | 0.3371 | 600 | 0.4795 | | 0.5582 | 0.3933 | 700 | 0.4655 | | 0.5582 | 0.4494 | 800 | 0.4522 | | 0.5582 | 0.5056 | 900 | 0.4433 | | 0.448 | 0.5618 | 1000 | 0.4355 | | 0.448 | 0.6180 | 1100 | 0.4295 | | 0.448 | 0.6742 | 1200 | 0.4252 | | 0.448 | 0.7303 | 1300 | 0.4200 | | 0.448 | 0.7865 | 1400 | 0.4159 | | 0.4123 | 0.8427 | 1500 | 0.4124 | | 0.4123 | 0.8989 | 1600 | 0.4098 | | 0.4123 | 0.9551 | 1700 | 0.4075 | | 0.4123 | 1.0112 | 1800 | 0.4086 | | 0.4123 | 1.0674 | 1900 | 0.4075 | | 0.3815 | 1.1236 | 2000 | 0.4069 | | 0.3815 | 1.1798 | 2100 | 0.4054 | | 0.3815 | 1.2360 | 2200 | 0.4043 | | 0.3815 | 1.2921 | 2300 | 0.4029 | | 0.3815 | 1.3483 | 2400 | 0.4022 | | 0.3532 | 1.4045 | 2500 | 0.4012 | | 0.3532 | 1.4607 | 2600 | 0.4002 | | 0.3532 | 1.5169 | 2700 | 0.3996 | | 0.3532 | 1.5730 | 2800 | 0.3986 | | 0.3532 | 1.6292 | 2900 | 0.3982 | | 0.35 | 1.6854 | 3000 | 0.3978 | | 0.35 | 1.7416 | 3100 | 0.3975 | | 0.35 | 1.7978 | 3200 | 0.3971 | | 0.35 | 1.8539 | 3300 | 0.3971 | | 0.35 | 1.9101 | 3400 | 0.3970 | | 0.3468 | 1.9663 | 3500 | 0.3970 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.4.0+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1