--- license: llama2 datasets: - yentinglin/zh_TW_c4 - yentinglin/traditional_mandarin_instructions language: - zh widget: - text: "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: 你好,請問你可以幫我寫一封推薦信嗎? ASSISTANT:" library_name: transformers pipeline_tag: text-generation model_link: https://huggingface.co./yentinglin/Taiwan-LLaMa-v1.0 model_name: Language Models for Taiwanese Culture 1.0 --- # Taiwan-LLaMa-v1.0-4bits-GPTQ - Model creator: [Yen-Ting Lin](https://huggingface.co./yentinglin) - Original model: [Language Models for Taiwanese Culture v1.0](https://huggingface.co./yentinglin/Taiwan-LLaMa-v1.0) ## Description This repo contains GPTQ model files for [Yen-Ting Lin's Language Models for Taiwanese Culture v1.0](https://huggingface.co./yentinglin/Taiwan-LLaMa-v1.0). # Original model card: Yen-Ting Lin's Language Models for Taiwanese Culture v1.0 # Language Models for Taiwanese Culture

✍️ Online Demo • 🤗 HF Repo • 🐦 Twitter • 📃 [Paper Coming Soon] • 👨️ Yen-Ting Lin



## Overview Taiwan-LLaMa is a full parameter fine-tuned model based on LLaMa 2 for Traditional Mandarin applications. **Taiwan-LLaMa v1.0** pretrained on over 5 billion tokens and instruction-tuned on over 490k conversations both in traditional mandarin. ## Demo A live demonstration of the model can be accessed at [Hugging Face Spaces](https://huggingface.co./spaces/yentinglin/Taiwan-LLaMa2). ## Key Features 1. **Traditional Mandarin Support**: The model is fine-tuned to understand and generate text in Traditional Mandarin, making it suitable for Taiwanese culture and related applications. 2. **Instruction-Tuned**: Further fine-tuned on conversational data to offer context-aware and instruction-following responses. 3. **Performance on Vicuna Benchmark**: Taiwan-LLaMa's relative performance on Vicuna Benchmark is measured against models like GPT-4 and ChatGPT. It's particularly optimized for Taiwanese culture. 4. **Flexible Customization**: Advanced options for controlling the model's behavior like system prompt, temperature, top-p, and top-k are available in the demo. ## Work in progress - [ ] **Improved pretraining**: A refined pretraining process (e.g. more data from Taiwan, training strategies) is under development, aiming to enhance model performance for better Taiwanese culture. - [ ] **Extend max length**: Utilizing the Rope mechanism as described in [the paper](https://arxiv.org/abs/2104.09864), the model's length will be extended from 4k to 8k. ## Taiwanese Culture Examples | Question | ChatGPT | **Taiwan LLaMa v1.0** | **Taiwan LLaMa v0.0 (w/o pretraining)** | Llama2_Traditional_Chinese_13b_Chat | |:-|:-|:-|:-|:-| | 以惡地景觀著名的是高雄哪一個景點? | 以惡地地景著名的是高雄市的旗津。 | 高雄以擁有惡地景觀著名的景點是田寮月世界。✅ | 以惡地景觀著名的是高雄市的旗津島。旗津島是一個小島,... | 高雄市內有多個以惡地景觀著名的景點,其中以下面幾個最為著名: 1. 高雄捷運紅線沿途景點:高雄市政府為了推廣高雄 | | 唐鳳是誰? | 唐鳳(Audrey Tang)是台灣的政治家、社會活動家和軟體工程師。她於2016年擔任台灣行政院數位政務委員,是台灣政府歷史上首位沒有政黨背景的政務官。唐鳳在軟體工程領域有豐富的經驗。 ✅ | 唐鳳是政治評論家、資訊社會學研究者,也是台灣第一位擔任政府數位政委的人。 ✅ | 唐鳳(Tang Feng)是一位著名的中國演員和歌手。他出生於1974年12月17日,出生地點在中國北京。唐鳳在1995年開始他的演藝生涯,並在同年發行了他的首張專輯《我不孤單》。此後,他發行了許多受歡迎的歌曲,並在多部電視劇和電影中擔任主角。唐鳳因其精湛的演技和迷人的歌聲而被譽為“亞洲魅力男王”。他的音樂獲得了多個獎項,包括“華表最佳新男演唱獎”、“華表最佳歌曲獎”和“華表最佳舞蹈獎”等。 | 唐鳳是唐朝時期的一位著名文學家,他的代表作品包括《陰騭》、《狂凡子》等。他的文學風格具有強烈的個性和創意,被譽為「唐代文學之父」。 | | NTU 在哪? | NTU位於新加坡,具體地址是50 Nanyang Avenue, Singapore 639798。 | NTU 是國立臺灣大學的縮寫。它是臺灣的一所頂尖研究型大學,位於臺北市。 ✅| NTU 是台灣的一所大學,位於台北市。✅ | NTU 的總部位於台灣新北市板橋區,佔地面積約為1,000公頃。| | 甚麼是22K? | "22K" 可能指的是金的純度,尤其是在珠寶和金飾方面。 | "22K"是指台灣的大學畢業生的起薪,大約是新台幣22,000元。這個詞被用來形容大學畢業生的起薪偏低,並且在就業市場上對於大學畢業生的需求不足。✅| 22K是指溫度尺度上的22,000K(千度)。1K代表一度,即溫度差距,是攝氏溫標(攝氏度)的一百萬分之一。因此,22K等於-253.15°C(攝氏溫標)或-423.67°F(華氏溫標)。 | 22K是一種簡寫,即22,000。它是一個數字,表示22,000個單位。| | 肉圓要不要加香菜? | 這是個個人口味的問題,有些人喜歡在肉圓中加入香菜,因為香菜的清香可以增添風味;而有些人則不喜歡香菜的味道,覺得它會蓋過其他食材的味道。所以要不要加香菜,可以根據個人喜好來決定。 | 這是一個個人喜好的問題,有些人喜歡在肉圓裡加香菜,有些人不喜歡。**在台灣**,肉圓加香菜是一種常見的做法,這是一種在肉圓上加香菜的做法。然而,在其他國這是一個文化差異的問題。😊 | 肉圓加香菜可以增添一些芳香和美味的口感,如果你喜歡香菜的味道,可以試試加入肉圓中。香菜通常在製作過程中炒香,可以增添一些芳香和美味的味道。如果你想要加入香菜,可以在製作過程中炒香一些香菜,然後將其混入肉圓中。肉圓加香菜可以增添一些芳香和美味的口感,如果你喜歡香菜的味道,可以試試加入肉圓中。| 加香菜的肉圓味道更好,但是不加香菜的肉圓也很好吃。如果你喜歡香菜的味道,那麼加上香菜就好了。如果你不喜歡香菜,那麼不加也不會影響肉 | ## Model We provide a number of model checkpoints that we trained. Please find them on Hugging Face [here](https://huggingface.co./models?search=taiwan-llama). Here are some quick links to the checkpoints that are finetuned from LLaMa 2: | **Model** | **13B** | |--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------| | **Taiwan-LLaMa v1.0** (_better for Taiwanese Culture_) | 🤗 yentinglin/Taiwan-LLaMa-v1.0 | | Taiwan-LLaMa v0.9 (partial instruction set) | 🤗 yentinglin/Taiwan-LLaMa-v0.9 | | Taiwan-LLaMa v0.0 (no Traditional Mandarin pretraining) | 🤗 yentinglin/Taiwan-LLaMa-v0.0 | ## Data Here are some quick links to the datasets that we used to train the models: | **Dataset** | **Link** | |---------------------------------|-------------------------------------------------------------------------------------------------------------------------------| | **Instruction-tuning** | 🤗 yentinglin/traditional_mandarin_instructions | | Traditional Mandarin Pretraining | 🤗 yentinglin/zh_TW_c4 | ## Architecture Taiwan-LLaMa is based on LLaMa 2, leveraging transformer architecture, flash attention 2, and bfloat16. It includes: * Pretraining Phase: Pretrained on a vast corpus of over 5 billion tokens, extracted from common crawl in Traditional Mandarin. * Fine-tuning Phase: Further instruction-tuned on over 490k multi-turn conversational data to enable more instruction-following and context-aware responses. ## Generic Capabilities on Vicuna Benchmark The data is translated into traditional mandarin for evaluating the general capability. The scores are calculated with ChatGPT as the baseline, represented as 100%. The other values show the relative performance of different models compared to ChatGPT. | Language Model | Relative Score (%) | |-------------------------------------|--------------------| | GPT-4 | 102.59% | | ChatGPT | 100.00% | | **Taiwan-LLaMa v1.0** | 76.76% | | Claude-Instant-1.2 | 74.04% | | Llama2_Traditional_Chinese_13b_Chat | 56.21% | ## How to deploy the model on my own machine? We recommend hosting models with [🤗 Text Generation Inference](https://github.com/huggingface/text-generation-inference). Please see their [license](https://github.com/huggingface/text-generation-inference/blob/main/LICENSE) for details on usage and limitations. ```bash bash run_text_generation_inference.sh "yentinglin/Taiwan-LLaMa" NUM_GPUS DIR_TO_SAVE_MODEL PORT MAX_INPUT_LEN MODEL_MAX_LEN ``` Prompt format follows vicuna-v1.1 template: ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {user} ASSISTANT: ``` ## Setup development environment ```bash conda create -n taiwan-llama python=3.10 -y conda activate taiwan-llama pip install -r requirements.txt ``` ## Citations If you use our code, data, or models in your research, please cite this repository. You can use the following BibTeX entry: ```bibtex @inproceedings{lin-chen-2023-llm, title = "{LLM}-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain Conversations with Large Language Models", author = "Lin, Yen-Ting and Chen, Yun-Nung", booktitle = "Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.nlp4convai-1.5", pages = "47--58" } @misc{taiwanllama, author={Lin, Yen-Ting and Chen, Yun-Nung}, title={Taiwanese-Aligned Language Models based on Meta-Llama2}, year={2023}, url={https://github.com/adamlin120/Taiwan-LLaMa}, note={Code and models available at https://github.com/adamlin120/Taiwan-LLaMa}, } ``` ## Collaborate With Us If you are interested in contributing to the development of Traditional Mandarin language models, exploring new applications, or leveraging Taiwan-LLaMa for your specific needs, please don't hesitate to contact us. We welcome collaborations from academia, industry, and individual contributors. ## License The code in this project is licensed under the Apache 2.0 License - see the [LICENSE](LICENSE) file for details. The models included in this project are licensed under the LLAMA 2 Community License. See the [LLAMA2 License](https://github.com/facebookresearch/llama/blob/main/LICENSE) for full details. ## OpenAI Data Acknowledgment The data included in this project were generated using OpenAI's models and are subject to OpenAI's Terms of Use. Please review [OpenAI's Terms of Use](https://openai.com/policies/terms-of-use) for details on usage and limitations. ## Acknowledgements We thank [Meta LLaMA team](https://github.com/facebookresearch/llama) and [Vicuna team](https://github.com/lm-sys/FastChat) for their open-source efforts in democratizing large language models.