Upload 2 files
Browse files- MitoEM-R-BC.yaml +16 -0
- MitoEM-R-Base.yaml +38 -0
MitoEM-R-BC.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
OUT_PLANES: 2
|
3 |
+
TARGET_OPT: ["0", "4-1-1"]
|
4 |
+
LOSS_OPTION:
|
5 |
+
- - WeightedBCEWithLogitsLoss
|
6 |
+
- DiceLoss
|
7 |
+
- - WeightedBCEWithLogitsLoss
|
8 |
+
- DiceLoss
|
9 |
+
LOSS_WEIGHT: [[1.0, 0.5], [1.0, 0.5]]
|
10 |
+
WEIGHT_OPT: [["1", "0"], ["1", "0"]]
|
11 |
+
OUTPUT_ACT: [["none", "sigmoid"], ["none", "sigmoid"]]
|
12 |
+
INFERENCE:
|
13 |
+
OUTPUT_ACT: ["sigmoid", "sigmoid"]
|
14 |
+
OUTPUT_PATH: outputs/MitoEM_R_BC/test/
|
15 |
+
DATASET:
|
16 |
+
OUTPUT_PATH: outputs/MitoEM_R_BC/
|
MitoEM-R-Base.yaml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
SYSTEM:
|
2 |
+
NUM_GPUS: 1
|
3 |
+
NUM_CPUS: 1
|
4 |
+
MODEL:
|
5 |
+
ARCHITECTURE: unet_plus_3d
|
6 |
+
BLOCK_TYPE: residual_se
|
7 |
+
INPUT_SIZE: [17, 225, 225]
|
8 |
+
OUTPUT_SIZE: [17, 225, 225]
|
9 |
+
IN_PLANES: 1
|
10 |
+
NORM_MODE: sync_bn
|
11 |
+
FILTERS: [32, 64, 96, 128, 160]
|
12 |
+
DATASET:
|
13 |
+
IMAGE_NAME: ["im_train.json"]
|
14 |
+
LABEL_NAME: ["mito_train.json"]
|
15 |
+
INPUT_PATH: datasets/MitoEM_R/ # or your own dataset path
|
16 |
+
OUTPUT_PATH: outputs/MitoEM_R/
|
17 |
+
PAD_SIZE: [4, 64, 64]
|
18 |
+
DO_CHUNK_TITLE: 0
|
19 |
+
DATA_CHUNK_NUM: [4, 8, 8]
|
20 |
+
DATA_CHUNK_ITER: 10000
|
21 |
+
SOLVER:
|
22 |
+
LR_SCHEDULER_NAME: WarmupCosineLR
|
23 |
+
BASE_LR: 0.04
|
24 |
+
ITERATION_STEP: 1
|
25 |
+
ITERATION_SAVE: 5000
|
26 |
+
ITERATION_TOTAL: 150000
|
27 |
+
SAMPLES_PER_BATCH: 2
|
28 |
+
INFERENCE:
|
29 |
+
INPUT_SIZE: [17, 257, 257]
|
30 |
+
OUTPUT_SIZE: [17, 257, 257]
|
31 |
+
IMAGE_NAME: /n/holylfs05/LABS/pfister_lab/Lab/coxfs01/pfister_lab2/Lab/donglai/eng/db/eva/2000_73728-310272.h5
|
32 |
+
OUTPUT_PATH: outputs/MitoEM_R/test/
|
33 |
+
OUTPUT_NAME: result # will automatically save to HDF5
|
34 |
+
PAD_SIZE: [4, 64, 64]
|
35 |
+
AUG_MODE: mean
|
36 |
+
AUG_NUM: 4
|
37 |
+
STRIDE: [8, 128, 128]
|
38 |
+
SAMPLES_PER_BATCH: 8
|