Image Classification
Transformers
PyTorch
ONNX
Inference Endpoints
frgfm commited on
Commit
b60b209
·
1 Parent(s): 17af543

docs: Updated README and config

Browse files
Files changed (2) hide show
  1. README.md +120 -0
  2. config.json +1 -0
README.md CHANGED
@@ -1,3 +1,123 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ tags:
4
+ - image-classification
5
+ - pytorch
6
+ - onnx
7
+ datasets:
8
+ - wildfire
9
  ---
10
+
11
+
12
+ # MobileNet V3 - Large model
13
+
14
+ Pretrained on a dataset for wildfire binary classification (soon to be shared). The MobileNet V3 architecture was introduced in [this paper](https://arxiv.org/pdf/1905.02244.pdf).
15
+
16
+
17
+ ## Model description
18
+
19
+ The core idea of the author is to simplify the final stage, while using SiLU as activations and making Squeeze-and-Excite blocks larger.
20
+
21
+
22
+ ## Installation
23
+
24
+ ### Prerequisites
25
+
26
+ Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision.
27
+
28
+ ### Latest stable release
29
+
30
+ You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows:
31
+
32
+ ```shell
33
+ pip install pyrovision
34
+ ```
35
+
36
+ or using [conda](https://anaconda.org/pyronear/pyrovision):
37
+
38
+ ```shell
39
+ conda install -c pyronear pyrovision
40
+ ```
41
+
42
+ ### Developer mode
43
+
44
+ Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*:
45
+
46
+ ```shell
47
+ git clone https://github.com/pyronear/pyro-vision.git
48
+ pip install -e pyro-vision/.
49
+ ```
50
+
51
+
52
+ ## Usage instructions
53
+
54
+ ```python
55
+ from PIL import Image
56
+ from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize
57
+ from torchvision.transforms.functional import InterpolationMode
58
+ from pyrovision.models import model_from_hf_hub
59
+
60
+ model = model_from_hf_hub("pyronear/mobilenet_v3_large").eval()
61
+
62
+ img = Image.open(path_to_an_image).convert("RGB")
63
+
64
+ # Preprocessing
65
+ config = model.default_cfg
66
+ transform = Compose([
67
+ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR),
68
+ PILToTensor(),
69
+ ConvertImageDtype(torch.float32),
70
+ Normalize(config['mean'], config['std'])
71
+ ])
72
+
73
+ input_tensor = transform(img).unsqueeze(0)
74
+
75
+ # Inference
76
+ with torch.inference_mode():
77
+ output = model(input_tensor)
78
+ probs = output.squeeze(0).softmax(dim=0)
79
+ ```
80
+
81
+
82
+ ## Citation
83
+
84
+ Original paper
85
+
86
+ ```bibtex
87
+ @article{DBLP:journals/corr/abs-1905-02244,
88
+ author = {Andrew Howard and
89
+ Mark Sandler and
90
+ Grace Chu and
91
+ Liang{-}Chieh Chen and
92
+ Bo Chen and
93
+ Mingxing Tan and
94
+ Weijun Wang and
95
+ Yukun Zhu and
96
+ Ruoming Pang and
97
+ Vijay Vasudevan and
98
+ Quoc V. Le and
99
+ Hartwig Adam},
100
+ title = {Searching for MobileNetV3},
101
+ journal = {CoRR},
102
+ volume = {abs/1905.02244},
103
+ year = {2019},
104
+ url = {http://arxiv.org/abs/1905.02244},
105
+ eprinttype = {arXiv},
106
+ eprint = {1905.02244},
107
+ timestamp = {Thu, 27 May 2021 16:20:51 +0200},
108
+ biburl = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib},
109
+ bibsource = {dblp computer science bibliography, https://dblp.org}
110
+ }
111
+ ```
112
+
113
+ Source of this implementation
114
+
115
+ ```bibtex
116
+ @software{chintala_torchvision_2017,
117
+ author = {Chintala, Soumith},
118
+ month = {4},
119
+ title = {{Torchvision}},
120
+ url = {https://github.com/pytorch/vision},
121
+ year = {2017}
122
+ }
123
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225], "arch": "mobilenet_v3_large", "interpolation": "bilinear", "input_shape": [3, 224, 224], "classes": ["Wildfire"]}