--- library_name: py-feat pipeline_tag: image-feature-extraction tags: - model_hub_mixin - pytorch_model_hub_mixin license: cc-by-nc-4.0 --- # img2pose ## Model Description img2pose uses Faster R-CNN to predict 6 Degree of Freedom Pose (DoF) for all faces in the photo. An interesting property of this model is that it can project the 3D face onto a 2D plane to also identify bounding boxes for each face. It does not require any other face detection model. ## Model Details - **Model Type**: Convolutional Neural Network (CNN) - **Architecture**: Faster R-CNN - **Framework**: PyTorch ## Model Sources - **Repository**: [GitHub Repository](https://github.com/vitoralbiero/img2pose) - **Paper**: [img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation](https://arxiv.org/abs/2012.07791) ## Citation If you use this model in your research or application, please cite the following paper: Vítor Albiero, Xingyu Chen, Xi Yin, Guan Pang, Tal Hassner, "img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation," CVPR, 2021, arXiv:2012.07791 ``` @inproceedings{albiero2021img2pose, title={img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation}, author={Albiero, Vítor and Chen, Xingyu and Yin, Xi and Pang, Guan and Hassner, Tal}, booktitle={CVPR}, year={2021}, url={https://arxiv.org/abs/2012.07791}, } ``` ## Acknowledgements We thank Albiero Vítor for sharing their code and training weights with a permissive license. ## Example Useage ```{python} import numpy as np import os import json import torch import torch.nn as nn from huggingface_hub import hf_hub_download from safetensors.torch import load_file from feat.facepose_detectors.img2pose.deps.models import FasterDoFRCNN, postprocess_img2pose from feat.utils.io import get_resource_path from torchvision.models.detection.backbone_utils import resnet_fpn_backbone # Load Model Configurations facepose_config_file = hf_hub_download(repo_id= "py-feat/img2pose", filename="config.json", cache_dir=get_resource_path()) with open(facepose_config_file, "r") as f: facepose_config = json.load(f) # Initialize img2pose device = 'cpu' backbone = resnet_fpn_backbone(backbone_name="resnet18", weights=None) backbone.eval() backbone.to(device) facepose_detector = FasterDoFRCNN(backbone=backbone, num_classes=2, min_size=facepose_config['min_size'], max_size=facepose_config['max_size'], pose_mean=torch.tensor(facepose_config['pose_mean']), pose_stddev=torch.tensor(facepose_config['pose_stddev']), threed_68_points=torch.tensor(facepose_config['threed_points']), rpn_pre_nms_top_n_test=facepose_config['rpn_pre_nms_top_n_test'], rpn_post_nms_top_n_test=facepose_config['rpn_post_nms_top_n_test'], bbox_x_factor=facepose_config['bbox_x_factor'], bbox_y_factor=facepose_config['bbox_y_factor'], expand_forehead=facepose_config['expand_forehead']) facepose_model_file = hf_hub_download(repo_id= "py-feat/img2pose", filename="model.safetensors", cache_dir=get_resource_path()) facepose_checkpoint = load_file(facepose_model_file) facepose_detector.load_state_dict(facepose_checkpoint) facepose_detector.eval() facepose_detector.to(device) # Test model face_image = "path/to/your/test_image.jpg" # Replace with your image img2pose_output = facepose_detector(face_image) # Postprocess img2pose_output = postprocess_img2pose(img2pose_output[0]) bbox = img2pose_output['boxes'] poses = img2pose_output['dofs'] facescores = img2pose_output['scores'] ```