ljchang commited on
Commit
8a31d01
·
verified ·
1 Parent(s): 0d150c1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -3
README.md CHANGED
@@ -2,8 +2,94 @@
2
  tags:
3
  - model_hub_mixin
4
  - pytorch_model_hub_mixin
 
 
5
  ---
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: [More Information Needed]
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  tags:
3
  - model_hub_mixin
4
  - pytorch_model_hub_mixin
5
+ license: cc-by-nc-4.0
6
+ library: pytorch
7
  ---
8
 
9
+ # img2pose
10
+
11
+ ## Model Description
12
+ img2pose uses Faster R-CNN to predict 6 Degree of Freedom Pose (DoF) for all faces in the photo. An interesting property of this model is that it can project the 3D face onto a 2D plane to also identify bounding boxes for each face. It does not require any other face detection model.
13
+
14
+ ## Model Details
15
+ - **Model Type**: Convolutional Neural Network (CNN)
16
+ - **Architecture**: Faster R-CNN
17
+ - **Framework**: PyTorch
18
+
19
+ ## Model Sources
20
+ - **Repository**: [GitHub Repository](https://github.com/vitoralbiero/img2pose)
21
+ - **Paper**: [img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation](https://arxiv.org/abs/2012.07791)
22
+
23
+ ## Citation
24
+ If you use this model in your research or application, please cite the following paper:
25
+
26
+ Vítor Albiero, Xingyu Chen, Xi Yin, Guan Pang, Tal Hassner, "img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation," CVPR, 2021, arXiv:2012.07791
27
+
28
+ ```
29
+ @inproceedings{albiero2021img2pose,
30
+ title={img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation},
31
+ author={Albiero, Vítor and Chen, Xingyu and Yin, Xi and Pang, Guan and Hassner, Tal},
32
+ booktitle={CVPR},
33
+ year={2021},
34
+ url={https://arxiv.org/abs/2012.07791},
35
+ }
36
+ ```
37
+
38
+ ## Acknowledgements
39
+ We thank Albiero Vítor for sharing their code and training weights with a permissive license.
40
+
41
+ ## Example Useage
42
+
43
+ ```{python}
44
+ import numpy as np
45
+ import os
46
+ import json
47
+ import torch
48
+ import torch.nn as nn
49
+ from huggingface_hub import hf_hub_download
50
+ from safetensors.torch import load_file
51
+ from feat.facepose_detectors.img2pose.deps.models import FasterDoFRCNN, postprocess_img2pose
52
+ from feat.utils.io import get_resource_path
53
+ from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
54
+
55
+
56
+ # Load Model Configurations
57
+ facepose_config_file = hf_hub_download(repo_id= "py-feat/img2pose", filename="config.json", cache_dir=get_resource_path())
58
+ with open(facepose_config_file, "r") as f:
59
+ facepose_config = json.load(f)
60
+
61
+ # Initialize img2pose
62
+ device = 'cpu'
63
+ backbone = resnet_fpn_backbone(backbone_name="resnet18", weights=None)
64
+ backbone.eval()
65
+ backbone.to(device)
66
+ facepose_detector = FasterDoFRCNN(backbone=backbone,
67
+ num_classes=2,
68
+ min_size=facepose_config['min_size'],
69
+ max_size=facepose_config['max_size'],
70
+ pose_mean=torch.tensor(facepose_config['pose_mean']),
71
+ pose_stddev=torch.tensor(facepose_config['pose_stddev']),
72
+ threed_68_points=torch.tensor(facepose_config['threed_points']),
73
+ rpn_pre_nms_top_n_test=facepose_config['rpn_pre_nms_top_n_test'],
74
+ rpn_post_nms_top_n_test=facepose_config['rpn_post_nms_top_n_test'],
75
+ bbox_x_factor=facepose_config['bbox_x_factor'],
76
+ bbox_y_factor=facepose_config['bbox_y_factor'],
77
+ expand_forehead=facepose_config['expand_forehead'])
78
+ facepose_model_file = hf_hub_download(repo_id= "py-feat/img2pose", filename="model.safetensors", cache_dir=get_resource_path())
79
+ facepose_checkpoint = load_file(facepose_model_file)
80
+ facepose_detector.load_state_dict(facepose_checkpoint)
81
+ facepose_detector.eval()
82
+ facepose_detector.to(device)
83
+
84
+ # Test model
85
+ face_image = "path/to/your/test_image.jpg" # Replace with your image
86
+
87
+ img2pose_output = facepose_detector(face_image)
88
+
89
+ # Postprocess
90
+ img2pose_output = postprocess_img2pose(img2pose_output[0])
91
+ bbox = img2pose_output['boxes']
92
+ poses = img2pose_output['dofs']
93
+ facescores = img2pose_output['scores']
94
+
95
+ ```