pushkarraj commited on
Commit
e445119
·
1 Parent(s): c328898

Delete README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -39
README.md DELETED
@@ -1,39 +0,0 @@
1
- !pip install transformers
2
- !pip install spacy
3
- !pip install gradio
4
-
5
- import gradio as gr
6
- import pandas as pd
7
- import os
8
- import time
9
- from transformers import pipeline, GPT2Tokenizer, OPTForCausalLM
10
-
11
- model=OPTForCausalLM.from_pretrained('pushkarraj/pushkar_OPT_paraphaser')
12
- tokenizer=GPT2Tokenizer.from_pretrained('pushkarraj/pushkar_OPT_paraphaser',truncation=True)
13
-
14
- generator=pipeline("text-generation",model=model,tokenizer=tokenizer,device=0)
15
-
16
- def cleaned_para(input_sentence):
17
- p=generator('<s>'+input_sentence+ '</s>>>>><p>',do_sample=True,max_length=len(input_sentence.split(" "))+200,temperature = 0.8,repetition_penalty=1.2,top_p=0.4,top_k=1)
18
- return p[0]['generated_text'].split('</s>>>>><p>')[1].split('</p>')[0]
19
-
20
- from __future__ import unicode_literals, print_function
21
- from spacy.lang.en import English # updated
22
-
23
- def sentensizer(raw_text):
24
- nlp = English()
25
- nlp.add_pipe("sentencizer") # updated
26
- doc = nlp(raw_text)
27
- sentences = [sent for sent in doc.sents]
28
- print(sentences)
29
- return sentences
30
-
31
- context = "Once, a group of frogs were roaming around the forest in search of water."
32
- text=context
33
- def paraphraser(text):
34
- begin=time.time()
35
- x=[cleaned_para(str(i)) for i in sentensizer(text)]
36
- end=time.time()
37
- return (".".join(x))
38
-
39
- print(paraphraser(text))