pushkarraj commited on
Commit
23af3dc
·
1 Parent(s): 65c9e2e
Files changed (1) hide show
  1. README.md +0 -38
README.md CHANGED
@@ -1,38 +0,0 @@
1
- !pip install transformers
2
- !pip install spacy
3
-
4
- import gradio as gr
5
- import pandas as pd
6
- import os
7
- import time
8
- from transformers import pipeline, GPT2Tokenizer, OPTForCausalLM
9
-
10
- model=OPTForCausalLM.from_pretrained('pushkarraj/pushkar_OPT_paraphaser')
11
- tokenizer=GPT2Tokenizer.from_pretrained('pushkarraj/pushkar_OPT_paraphaser',truncation=True)
12
-
13
- generator=pipeline("text-generation",model=model,tokenizer=tokenizer,device=0)
14
-
15
- def cleaned_para(input_sentence):
16
- p=generator('<s>'+input_sentence+ '</s>>>>><p>',do_sample=True,max_length=len(input_sentence.split(" "))+200,temperature = 0.8,repetition_penalty=1.2,top_p=0.4,top_k=1)
17
- return p[0]['generated_text'].split('</s>>>>><p>')[1].split('</p>')[0]
18
-
19
- from __future__ import unicode_literals, print_function
20
- from spacy.lang.en import English # updated
21
-
22
- def sentensizer(raw_text):
23
- nlp = English()
24
- nlp.add_pipe("sentencizer") # updated
25
- doc = nlp(raw_text)
26
- sentences = [sent for sent in doc.sents]
27
- print(sentences)
28
- return sentences
29
-
30
- context = "Once, a group of frogs were roaming around the forest in search of water."
31
- text=context
32
- def paraphraser(text):
33
- begin=time.time()
34
- x=[cleaned_para(str(i)) for i in sentensizer(text)]
35
- end=time.time()
36
- return (".".join(x))
37
-
38
- print(paraphraser(text))