pushkarraj's picture
Create app.py
848d85d
raw
history blame
1.19 kB
import gradio as gr
import pandas as pd
import os
import time
from transformers import pipeline,GPT2Tokenizer,OPTForCausalLM
model=OPTForCausalLM.from_pretrained('pushkarraj/pushkar_OPT_paraphaser')
tokenizer=GPT2Tokenizer.from_pretrained('pushkarraj/pushkar_OPT_paraphaser',truncation=True)
generator=pipeline("text-generation",model=model,tokenizer=tokenizer,device=0)
def cleaned_para(input_sentence):
p=generator('<s>'+input_sentence+ '</s>>>>><p>',do_sample=True,max_length=len(input_sentence.split(" "))+200,temperature = 0.8,repetition_penalty=1.2,top_p=0.4,top_k=1)
return p[0]['generated_text'].split('</s>>>>><p>')[1].split('</p>')[0]
from __future__ import unicode_literals, print_function
from spacy.lang.en import English # updated
def sentensizer(raw_text):
nlp = English()
nlp.add_pipe("sentencizer") # updated
doc = nlp(raw_text)
sentences = [sent for sent in doc.sents]
print(sentences)
return sentences
def paraphraser(text):
begin=time.time()
x=[cleaned_para(str(i)) for i in sentensizer(text)]
end=time.time()
return (".".join(x))
interface=gr.Interface(fn=paraphraser,inputs="text",outputs="text",title="Paraphraser")
interface.launch()