--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: paraphrase-MiniLM-L12-v2-CoLA results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5057060886900621 widget: - text: 'The cat sat on the mat.' example_title: Correct grammatical sentence - text: 'Me and my friend going to the store.' example_title: Incorrect subject-verb agreement - text: 'I ain''t got no money.' example_title: Incorrect verb conjugation and double negative - text: 'She don''t like pizza no more.' example_title: Incorrect verb conjugation and double negative - text: 'They is arriving tomorrow.' example_title: Incorrect verb conjugation --- # paraphrase-MiniLM-L12-v2-CoLA This model is a fine-tuned version of [sentence-transformers/paraphrase-MiniLM-L12-v2](https://huggingface.co./sentence-transformers/paraphrase-MiniLM-L12-v2) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.4636 - Matthews Correlation: 0.5057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 30198 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 16.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5747 | 1.0 | 67 | 0.5394 | 0.3455 | | 0.5025 | 2.0 | 134 | 0.4999 | 0.4270 | | 0.3698 | 3.0 | 201 | 0.4636 | 0.5057 | | 0.2969 | 4.0 | 268 | 0.5309 | 0.4751 | | 0.2275 | 5.0 | 335 | 0.6238 | 0.4775 | | 0.1859 | 6.0 | 402 | 0.6315 | 0.4867 | | 0.1517 | 7.0 | 469 | 0.7783 | 0.4695 | | 0.1016 | 8.0 | 536 | 0.6762 | 0.4901 | | 0.1017 | 9.0 | 603 | 0.7412 | 0.5046 | | 0.0898 | 10.0 | 670 | 0.7719 | 0.4877 | | 0.0527 | 11.0 | 737 | 0.8627 | 0.4955 | | 0.0582 | 12.0 | 804 | 0.8986 | 0.4738 | | 0.074 | 13.0 | 871 | 0.9469 | 0.4942 | | 0.0508 | 14.0 | 938 | 0.9436 | 0.4918 | | 0.024 | 15.0 | 1005 | 0.9391 | 0.4919 | | 0.0458 | 16.0 | 1072 | 0.9375 | 0.4946 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.1