--- license: other tags: - generated_from_trainer - opt - custom-license - no-commercial - email - auto-complete - 125m datasets: - aeslc widget: - text: "Hey ,\n\nThank you for signing up for my weekly newsletter. Before we get started, you'll have to confirm your email address." example_title: "newsletter" - text: "Hi ,\n\nI hope this email finds you well. Let me start by saying that I am a big fan of your work." example_title: "fan" - text: "Greetings ,\n\nI hope you had a splendid evening at the Company sausage eating festival. I am reaching out because" example_title: "festival" - text: "Good Morning ,\n\nI was just thinking to myself about how much I love creating value" example_title: "value" - text: "URGENT - I need" example_title: "URGENT" parameters: min_length: 4 max_length: 64 length_penalty: 0.7 no_repeat_ngram_size: 3 do_sample: False num_beams: 4 early_stopping: True repetition_penalty: 3.5 use_fast: False --- # opt-125m-emailgen-v2_DS-aeslc_Ep-4_Bs-8 This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co./facebook/opt-125m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8245 | 1.0 | 129 | 2.8030 | | 2.521 | 2.0 | 258 | 2.6343 | | 2.2074 | 3.0 | 387 | 2.5595 | | 2.0145 | 4.0 | 516 | 2.5552 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1