--- base_model: microsoft/mpnet-base tags: - edu score - data filter inference: false datasets: - HuggingFaceFW/fineweb-edu-llama3-annotations license: mit language: - en --- [Visualize in Weights & Biases](https://wandb.ai/pszemraj/eduscore-regression/runs/k2lc9nx3) # mpnet-base-edu-classifier This model is a fine-tuned version of [microsoft/mpnet-base](https://huggingface.co./microsoft/mpnet-base) on the HuggingFaceFW/fineweb-edu-llama3-annotations dataset. It achieves the following results on the evaluation set: - Loss: 0.2105 - Mse: 0.2105 ## Usage Note this is for CPU, for GPU you will need to make some (small) changes. ```py from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("pszemraj/mpnet-base-edu-classifier") model = AutoModelForSequenceClassification.from_pretrained("pszemraj/mpnet-base-edu-classifier") text = "This is a test sentence." inputs = tokenizer(text, return_tensors="pt", padding="longest", truncation=True) outputs = model(**inputs) logits = outputs.logits.squeeze(-1).float().detach().numpy() score = logits.item() result = { "text": text, "score": score, "int_score": int(round(max(0, min(score, 5)))), } print(result) # {'text': 'This is a test sentence.', 'score': 0.3350256383419037, 'int_score': 0} ``` ## Intended uses & limitations Refer to the hf classifier's [model card](https://huggingface.co./HuggingFaceFW/fineweb-edu-classifier#limitations) for more details ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 90085 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-09 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1.0